-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHuffman Coding.m
93 lines (75 loc) · 3.56 KB
/
Huffman Coding.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
probabilities = [0.4 0.3 0.2 0.1];
% Normalise the probabilities
probabilities = probabilities/sum(probabilities);
% For each probability...
for index = 1:length(probabilities)
% ...create an empty codeword
codewords{index} = []
% Create a set containing only this codeword
set_contents{index} = index
% Store the probability associated with this set
set_probabilities(index) = probabilities(index)
end
disp('-------------------------------------------------------------------------');
disp('The sets of symbols and their probabilities are:')
for set_index = 1:length(set_probabilities)
disp([num2str(set_probabilities(set_index)),' ', num2str(set_contents{set_index})])
end
% Keep going until all the sets have been merged into one
while length(set_contents) > 1
% Determine which sets have the lowest total probabilities
[temp, sorted_indices] = sort(set_probabilities)
% Get the set having the lowest probability
zero_set = set_contents{sorted_indices(1)}
% Get that probability
zero_probability = set_probabilities(sorted_indices(1))
% For each codeword in the set...
for codeword_index = 1:length(zero_set)
% ...append a zero
codewords{zero_set(codeword_index)} = [codewords{zero_set(codeword_index)}, 0]
end
% Get the set having the second lowest probability
one_set = set_contents{sorted_indices(2)}
% Get that probability
one_probability = set_probabilities(sorted_indices(2))
% For each codeword in the set...
for codeword_index = 1:length(one_set)
% ...append a one
codewords{one_set(codeword_index)} = [codewords{one_set(codeword_index)}, 1]
end
disp('The symbols, their probabilities and the allocated bits are:');
% For each codeword...
for index = 1:length(codewords)
% ...display its bits
disp([num2str(index),' ',num2str(probabilities(index)),' ',num2str(codewords{index})])
end
% Remove the two sets having the lowest probabilities...
set_contents(sorted_indices(1:2)) = []
% ...and merge them into a new set
set_contents{length(set_contents)+1} = [zero_set, one_set]
% Remove the two lowest probabilities...
set_probabilities(sorted_indices(1:2)) = []
% ...and give their sum to the new set
set_probabilities(length(set_probabilities)+1) = zero_probability + one_probability
disp('The sets and their probabilities are:')
for set_index = 1:length(set_probabilities)
disp([num2str(set_probabilities(set_index)),' ', num2str(set_contents{set_index})])
end
end
disp('-------------------------------------------------------------------------');
disp('The symbols, their probabilities and the allocated Huffman codewords are:');
% For each codeword...
for index = 1:length(codewords)
% ...display its bits in reverse order
disp([num2str(index), ' ', num2str(probabilities(index)),' ',num2str(codewords{index}(length(codewords{index}):-1:1))])
end
% Calculate the symbol entropy
entropy = sum(probabilities.*log2(1./probabilities))
% Calculate the average Huffman codeword length
av_length = 0
for index = 1:length(codewords)
av_length = av_length + probabilities(index)*length(codewords{index})
end
disp(['The symbol entropy is: ',num2str(entropy)])
disp(['The average Huffman codeword length is: ',num2str(av_length)])
disp(['The Huffman coding rate is: ',num2str(entropy/av_length)])