-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_cn.py
40 lines (36 loc) · 1.57 KB
/
draw_cn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
from matplotlib.backends.backend_pdf import PdfPages
def openfile(filepath):
file = open(filepath)
y = []
while 1:
line = file.readline()
if line.rstrip('\n') == '':
break
y.append(float(line.rstrip('\n')))
if not line:
break
pass
file.close()
return y
if __name__ == '__main__':
myfont = fm.FontProperties(fname='/Users/yangwenzhuo/Library/Fonts/SimHei.ttf')
with PdfPages('dpfl_example.pdf') as pdf:
plt.figure()
epsilon_array = ['1.0', '5.0', '10.0', '20.0', '30.0']
# plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
# plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.ylabel('模型准确率', fontproperties=myfont, fontsize=20)
plt.xlabel('训练轮次', fontproperties=myfont, fontsize=20)
for epsilon in epsilon_array:
y = openfile('./log/accfile_fed_mnist_cnn_100_iidFalse_dp_Gaussian_epsilon_{}.dat'.format(epsilon))
plt.plot(range(100), y, label=r'$\epsilon={}$'.format(epsilon))
y = openfile('./log/accfile_fed_mnist_cnn_100_iidFalse_dp_no_dp_epsilon_20.dat'.format(epsilon))
plt.plot(range(100), y, label=r'$\epsilon=+\infty$')
# plt.title('MNIST数据集', fontproperties=myfont)
# plt.legend()
plt.legend(handlelength=1, ncol=2, loc='best', fontsize=15, columnspacing=0.5)
plt.grid()
pdf.savefig()
# plt.savefig('xxx.png')