-
Notifications
You must be signed in to change notification settings - Fork 2
/
coare30vn_ref_cool.m
329 lines (288 loc) · 13.7 KB
/
coare30vn_ref_cool.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
function A=coare30vn_ref_cool(u,zu,t,zt,rh,zq,P,ts,Rs,Rl,lat,zi,zref_u,zref_t,zref_q)
%
% A=[usr tau hsb hlb hbb hsbb tsr qsr zot zoq Cd Ch Ce L zet dter tkt Urf Trf Qrf RHrf];
disp('WHOI vectorized COARE 3.0a');
% Vectorized version of COARE3 code (Fairall et al, 2003) with cool skin option
% retained but warm layer and surface wave options removed. Assumes u,t,rh,ts
% are vectors; sensor heights zu,zt,zl, latitude lat, and PBL height zi are
% constants; air pressure P and radiation Rs,Rl may be vectors or constants.
% Default values are assigned for P,Rs,Rl,lat,and zi if these data are not
% available. Input NaNs to indicate no data. Defaults should be set to
% representative regional values if possible.
%
% Input:
%
% u = relative wind speed (m/s) at height zu(m)
% t = bulk air temperature (degC) at height zt(m)
% rh = relative humidity (%) at height zq(m)
% P = surface air pressure (mb) (default = 1015)
% ts = water temperature (degC)
% Rs = downward shortwave radiation (W/m^2) (default = 150)
% Rl = downward longwave radiation (W/m^2) (default = 370)
% lat = latitude (default = +45 N)
% zi = PBL height (m) (default = 600m)
% zref_u,zref_t,zreef_q are reference heights for wind, temp, spec hum
% values. If you use zref_u=3, then
%
%outputs of A
%A=[usr tau hsb hlb hbb hsbb tsr qsr zot zoq Cd Ch Ce L zet dter tkt Urf Trf Qrf RHrf];
% usr = friction velocity (m/s)
% tau = wind stress (N/m^2)
% hsb = sensible heat flux into ocean (W/m^2)
% hlb = latent heat flux into ocean (W/m^2)
% hbb = bouyancy flux into ocean (W/m^2)
% hsbb = sonic bouyancy flux into ocean (W/m^2)
% tsr = t*
% qsr = q*
% zot = z_o for temperature (m)
% zoq = z_o for humidity (m)
% Cd = wind stress transfer coefficient at height zu
% Ch = sensible heat transfer coefficient at height zt
% Ce = latent heat transfer coefficient at height zq
% L = Obukhov length scale (m)
% zet = Monin-Obukhov stability parameter zu/L
% dter = cool-skin temperature depression (degC)
% tkt = cool-skin thickness (m)
% Urf = windspeed at reference height, zref_u (m/s)
% Trf = temperture at reference height, zref_t (C)
% Qrf = specific humidity at reference height, zref_q (g/kg)
% RHrf = relative humidity at reference height (%)
% Notes: 1) u is the relative wind speed, i.e., the magnitude of the
% difference between the wind (at zu) and ocean surface current
% vectors.
% 2) Set jcool=0 in code if ts is true surface skin temperature,
% otherwise ts is assumed the bulk temperature and jcool=1.
% 3) Set P=NaN to assign default value if no air pressure data
% available.
% 4) Set Rs=NaN, Rl=NaN if no radiation data available. This assigns
% default values to Rs, Rl so that cool skin option can be applied.
% 5) Set lat=NaN and/or zi=NaN to assign default values if latitude
% and/or PBL height not given.
% 6) The code to compute the heat flux caused by precipitation is
% included if rain data is available (default is no rain).
% 7) Code updates the cool-skin temperature depression dter and thickness
% tkt during iteration loop for consistency.
% 8) Number of iterations set to nits = 6.
% Reference:
%
% Fairall, C.W., E.F. Bradley, J.E. Hare, A.A. Grachev, and J.B. Edson (2003),
% Bulk parameterization of air sea fluxes: updates and verification for the
% COARE algorithm, J. Climate, 16, 571-590.
% Code history:
%
% 1. 12/14/05 - created based on scalar version coare26sn.m with input
% on vectorization from C. Moffat.
% 2. 12/21/05 - sign error in psiu_26 corrected, and code added to use variable
% values from the first pass through the iteration loop for the stable case
% with very thin M-O length relative to zu (zetu>50) (as is done in the
% scalar coare26sn and COARE3 codes).
%-----------------------------------------------------------------------
% set jcool=1 if Ts is bulk ocean temperature (default),
% jcool=0 if Ts is true ocean skin temperature.
jcool=1;
% convert input to column vectors
u=u(:);t=t(:);
rh=rh(:);P=P(:);ts=ts(:);
Rs=Rs(:);Rl=Rl(:);lat=lat(:);zi=zi(:);
N=length(u);zt=zt(:);zu=zu(:);zq=zq(:);
% set local variables to default values if input is NaN
if isnan(P); P=1015*ones(N,1); end % pressure
if isnan(Rs); Rs=370*ones(N,1); end % incident shortwave radiation
if isnan(Rl); Rl=150*ones(N,1); end % incident longwave radiation
if isnan(lat); lat=45; end % latitude
if isnan(zi); zi=600; end % PBL height
% input variable u is assumed relative wind speed (magnitude of difference
% between wind and surface current vectors). to follow orginal Fairall code, set
% surface current speed us=0. if us data are available, construct u prior to
% using this code.
us = 0*u;
% convert rh to specific humidity
Qs = qsat26sea(ts,P)./1000; % surface water specific humidity (g/kg)
Q = qsat26air(t,P,rh)./1000; % specific humidity of air (g/kg)
% set rain to zero
% rain = 0*u; % rain rate (mm/hr) - keep as option % Siqi
%*********** set constants **********************************************
%zref=10.0;
Beta = 1.2;
von = 0.4;
fdg = 1.00;
tdk = 273.16;
grav = grv(lat);
%*********** air constants **********************************************
Rgas = 287.1;
Le = (2.501-.00237*ts)*1e6;
cpa = 1004.67;
% cpv = cpa*(1+0.84*Q); % Siqi
rhoa = P*100./(Rgas*(t+tdk).*(1+0.61*Q));
visa = 1.326e-5*(1+6.542e-3.*t+8.301e-6*t.^2-4.84e-9*t.^3);
%*********** cool skin constants ***************************************
Al = 2.1e-5*(ts+3.2).^0.79;
be = 0.026;
cpw = 4000;
rhow = 1022;
visw = 1e-6;
tcw = 0.6;
bigc = 16*grav*cpw*(rhow*visw)^3./(tcw.^2*rhoa.^2);
wetc = 0.622*Le.*Qs./(Rgas*(ts+tdk).^2);
%*********** net radiation fluxes ***************************************
Rns = 0.945.*Rs; % albedo correction
Rnl = 0.97*(5.67e-8*(ts-0.3*jcool+tdk).^4-Rl); % initial value
%**************** begin bulk loop ********************************************
%*********** first guess ************************************************
du = u-us;
dt = ts-t-.0098*zt;
dq = Qs-Q;
ta = t+tdk;
ug = 0.5;
dter = 0.3;
ut = sqrt(du.^2+ug.^2);
u10 = ut.*log(10/1e-4)./log(zu/1e-4);
usr = 0.035*u10;
zo10 = 0.011*usr.^2./grav + 0.11*visa./usr;
Cd10 = (von./log(10./zo10)).^2;
Ch10 = 0.00115;
Ct10 = Ch10./sqrt(Cd10);
zot10 = 10./exp(von./Ct10);
Cd = (von./log(zu./zo10)).^2;
Ct = von./log(zt./zot10);
CC = von*Ct./Cd;
Ribcu = -zu./zi/.004./Beta.^3;
Ribu = -grav.*zu./ta.*((dt-dter*jcool)+.61*ta.*dq)./ut.^2;
zetu = CC.*Ribu.*(1+27/9*Ribu./CC);
k50=find(zetu>50); % stable with very thin M-O length relative to zu
k=find(Ribu<0);if ~isempty(k); zetu(k)=CC(k).*Ribu(k)./(1+Ribu(k)./Ribcu(k)); clear k;end
L10 = zu./zetu;
usr = ut.*von./(log(zu./zo10)-psiu_26(zu./L10));
tsr = -(dt-dter*jcool).*von*fdg./(log(zt./zot10)-psit_26(zt./L10));
qsr = -(dq-wetc.*dter*jcool)*von*fdg./(log(zq./zot10)-psit_26(zq./L10));
tkt = 0.001*ones(N,1);
charn = 0.011*ones(N,1);
k=find(ut>10); charn(k)=0.011+(ut(k)-10)/(18-10)*(0.018-0.011); clear k;
k=find(ut>18); charn(k)=.018; clear k;
nits=6; % number of iterations
%************** bulk loop **************************************************
for i=1:nits
zet=von.*grav.*zu./ta.*(tsr +.61*ta.*qsr)./(usr.^2);
zo=charn.*usr.^2./grav+0.11*visa./usr; % surface roughness
rr=zo.*usr./visa;
L=zu./zet;
zoq=min(1.15e-4,5.5e-5./rr.^0.6); % mositure roughness
zot=zoq; % temperature roughness
usr=ut*von./(log(zu./zo)-psiu_26(zu./L));
tsr=-(dt-dter*jcool).*von.*fdg./(log(zt./zot)-psit_26(zt./L));
qsr=-(dq-wetc.*dter*jcool)*von*fdg./(log(zq./zoq)-psit_26(zq./L));
tvsr=tsr+0.61*ta.*qsr;
tssr=tsr+0.51*ta.*qsr;
Bf=-grav./ta.*usr.*tvsr;
ug=0.2*ones(N,1);
k=find(Bf>0);if ~isempty(k); ug(k)=Beta*(Bf(k).*zi(k)).^.333; clear k;end
ut=sqrt(du.^2+ug.^2);
hsb=-rhoa*cpa.*usr.*tsr;
hlb=-rhoa.*Le.*usr.*qsr;
qout=Rnl+hsb+hlb;
dels=Rns.*(0.065+11*tkt-6.6e-5./tkt.*(1-exp(-tkt/8.0e-4)));
qcol=qout-dels;
alq=Al.*qcol+be*hlb*cpw./Le;
xlamx=6.0*ones(N,1);
tkt=min(0.01, xlamx.*visw./(sqrt(rhoa./rhow).*usr));
k=find(alq>0); xlamx(k)=6./(1+(bigc(k).*alq(k)./usr(k).^4).^0.75).^0.333;
tkt(k)=xlamx(k).*visw./(sqrt(rhoa(k)./rhow).*usr(k)); clear k;
dter=qcol.*tkt./tcw;
dqer=wetc.*dter;
Rnl=0.97*(5.67e-8*(ts-dter.*jcool+tdk).^4-Rl); % update dter
if i==1 % save first iteration solution for case of zetu>50;
usr50=usr(k50);tsr50=tsr(k50);qsr50=qsr(k50);L50=L(k50);
zet50=zet(k50);dter50=dter(k50);dqer50=dqer(k50);tkt50=tkt(k50);
end
end
% insert first iteration solution for case with zetu>50
usr(k50)=usr50;tsr(k50)=tsr50;qsr(k50)=qsr50;L(k50)=L50;
zet(k50)=zet50;dter(k50)=dter50;dqer(k50)=dqer50;tkt(k50)=tkt50;
%**************** compute fluxes ********************************************
tau=rhoa.*usr.*usr.*du./ut; % wind stress
hsb=rhoa.*cpa.*usr.*tsr; % sensible heat flux
hlb=rhoa.*Le.*usr.*qsr; % latent heat flux
hbb=rhoa.*cpa.*usr.*tvsr; % buoyancy flux
hsbb=rhoa.*cpa.*usr.*tssr; % sonic heat flux
%***** compute transfer coeffs relative to ut @ meas. ht ********************
Cd=tau./rhoa./ut./max(.1,du);
Ch=-usr.*tsr./ut./(dt-dter*jcool);
Ce=-usr.*qsr./(dq-dqer*jcool)./ut;
%*** compute 10-m neutral coeff relative to ut (output if needed) ************
% Cdn_10=von.^2./log(10./zo).^2;
% Chn_10=von.^2.*fdg./log(10./zo)./log(10./zot);
% Cen_10=von.^2.*fdg./log(10./zo)./log(10./zoq);
Urf=u+usr./von.*(log(zref_u./zu)-psiu_26(zref_u./L)+psiu_26(zu./L));
Trf=t+tsr./von./fdg.*(log(zref_t./zt)-psit_26(zref_t./L)+psit_26(zt./L))+0.0098*(zt-zref_t);
Qrf=Q+qsr./von./fdg.*(log(zref_q./zq)-psit_26(zref_q./L)+psit_26(zq./L));
RHrf=RHcalc(Trf,P,Qrf);
Qrf=Qrf*1000;
%**************** output ****************************************************
A=[usr tau hsb hlb hbb hsbb tsr qsr zo zot zoq Cd Ch Ce L zet dter tkt Urf Trf Qrf RHrf];
% 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
%******** rain heat flux (save to use if desired) *****************************
% dwat=2.11e-5*((t+tdk)/tdk)^1.94; %! water vapour diffusivity
% dtmp=(1.+3.309e-3*t-1.44e-6*t*t)*0.02411/(rhoa*cpa); %! heat diffusivity
% dqs_dt=Q.*Le/(Rgas*(t+tdk).^2); %! Clausius-Clapeyron
% alfac= 1/(1+0.622*(dqs_dt.*Le*.dwat)./(cpa.*dtmp)); %! wet bulb factor
% RF= rain.*alfac.*cpw.*((ts-t-dter*jcool)+(Qs-Q-dqer*jcool)*Le./cpa)/3600;
%------------------------------------------------------------------------------
function psi=psit_26(zet)
% computes temperature structure function
dzet=min(50,0.35*zet); % stable
psi=-((1+0.6667*zet).^1.5+0.6667*(zet-14.28).*exp(-dzet)+8.525);
k=find(zet<0); % unstable
x=(1-15*zet(k)).^0.5;
psik=2*log((1+x)./2);
x=(1-34.15*zet(k)).^0.3333;
psic=1.5*log((1+x+x.^2)./3)-sqrt(3)*atan((1+2*x)./sqrt(3))+4*atan(1)./sqrt(3);
f=zet(k).^2./(1+zet(k).^2);
psi(k)=(1-f).*psik+f.*psic;
%------------------------------------------------------------------------------
function psi=psiu_26(zet)
% computes velocity structure function
dzet=min(50,0.35*zet); % stable
psi=-((1+zet)+0.6667*(zet-14.28).*exp(-dzet)+8.525);
k=find(zet<0); % unstable
x=(1-15*zet(k)).^0.25;
psik=2*log((1+x)/2)+log((1+x.*x)/2)-2*atan(x)+2*atan(1);
x=(1-10.15*zet(k)).^0.3333;
psic=1.5*log((1+x+x.^2)/3)-sqrt(3)*atan((1+2*x)./sqrt(3))+4*atan(1)./sqrt(3);
f=zet(k).^2./(1+zet(k).^2);
psi(k)=(1-f).*psik+f.*psic;
%------------------------------------------------------------------------------
function exx=bucksat(T,P)
% computes saturation vapor pressure [mb]
% given T [degC] and P [mb]
exx=6.1121.*exp(17.502.*T./(T+240.97)).*(1.0007+3.46e-6.*P);
%------------------------------------------------------------------------------
function qs=qsat26sea(T,P)
% computes surface saturation specific humidity [g/kg]
% given T [degC] and P [mb]
ex=bucksat(T,P);
es=0.98*ex; % reduction at sea surface
qs=622*es./(P-0.378*es);
%------------------------------------------------------------------------------
function qs=qsat26air(T,P,rh)
% computes specific humidity [g/kg]
% given T [degC], RH [%] and P [mb]
es=bucksat(T,P);
em=0.01*rh.*es;
qs=622*em./(P-0.378*em);
%------------------------------------------------------------------------------
function g=grv(lat)
% computes g [m/sec^2] given lat in deg
gamma=9.7803267715;
c1=0.0052790414;
c2=0.0000232718;
c3=0.0000001262;
c4=0.0000000007;
phi=lat*pi/180;
x=sin(phi);
g=gamma*(1+c1*x.^2+c2*x.^4+c3*x.^6+c4*x.^8);
%------------------------------------------------------------------------------
function RHrf=RHcalc(T,P,Q)
% computes relative humidity given T,P, & Q
es=6.1121.*exp(17.502.*T./(T+240.97)).*(1.0007+3.46e-6.*P);
em=Q.*P./(0.378.*Q+0.622);
RHrf=100*em./es;