-
Notifications
You must be signed in to change notification settings - Fork 0
/
BOATS.nb
1354 lines (1303 loc) · 63.2 KB
/
BOATS.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 63172, 1346]
NotebookOptionsPosition[ 59344, 1281]
NotebookOutlinePosition[ 59677, 1296]
CellTagsIndexPosition[ 59634, 1293]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"hullcurve", " ", "=", " ",
RowBox[{"2", "*",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"x", "/", "2"}], "]"}], "^", "3"}]}]}], "\[IndentingNewLine]",
RowBox[{"length", " ", "=", " ", "10"}], "\[IndentingNewLine]",
RowBox[{"width", " ", "=", " ", "4"}], "\[IndentingNewLine]",
RowBox[{"depth", " ", "=", " ", "2"}], "\[IndentingNewLine]",
RowBox[{"hulldensity", " ", "=", " ", "300"}], "\[IndentingNewLine]",
RowBox[{"waterdensity", " ", "=", " ", "1000"}]}], "Input",
CellChangeTimes->{{3.7585771740390387`*^9, 3.758577320553252*^9}, {
3.75857911448647*^9, 3.758579147963587*^9}, {3.758579750400107*^9,
3.758579750892169*^9}},
CellLabel->
"In[108]:=",ExpressionUUID->"9bbfa61a-a8ba-4b0d-b24a-45f3e61b1876"],
Cell[BoxData[
FractionBox[
SuperscriptBox[
RowBox[{"Abs", "[", "x", "]"}], "3"], "4"]], "Output",
CellChangeTimes->{3.75857975283374*^9},
CellLabel->
"Out[108]=",ExpressionUUID->"9413e3e3-b533-4466-897f-c87750b65bd5"],
Cell[BoxData["10"], "Output",
CellChangeTimes->{3.758579752835661*^9},
CellLabel->
"Out[109]=",ExpressionUUID->"828feb90-4c01-4da4-abec-58402d860495"],
Cell[BoxData["4"], "Output",
CellChangeTimes->{3.758579752837541*^9},
CellLabel->
"Out[110]=",ExpressionUUID->"915adee0-8b9e-49b0-b89f-bef653498c7a"],
Cell[BoxData["2"], "Output",
CellChangeTimes->{3.7585797528393507`*^9},
CellLabel->
"Out[111]=",ExpressionUUID->"7ce36207-0605-415d-879d-7e28f258eda3"],
Cell[BoxData["300"], "Output",
CellChangeTimes->{3.7585797528413973`*^9},
CellLabel->
"Out[112]=",ExpressionUUID->"ba6d3efa-5647-440c-ab0a-297b8ef87a6d"],
Cell[BoxData["1000"], "Output",
CellChangeTimes->{3.758579752843354*^9},
CellLabel->
"Out[113]=",ExpressionUUID->"fe0d8120-a763-46c5-8ec7-9cc89f894b0f"]
}, Open ]],
Cell["\<\
the ballast is a thin tungsten rod at the bottom of the hull, because I can\
\[CloseCurlyQuote]t figure out how to factor in discrete quantities to my \
volume integrals\
\>", "Text",
CellChangeTimes->{{3.758579155252462*^9,
3.758579208063603*^9}},ExpressionUUID->"9afa87c4-1732-4dfd-8dc0-\
14438c64ee42"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"ballast", " ", "=", " ",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "^", "2"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"z", "-", "0.09"}], ")"}], "^", "2"}]}], "\[LessEqual]",
RowBox[{"0.09", "^", "2"}]}], "&&",
RowBox[{"y", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"y", "\[LessEqual]", "10"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{"\[Rho]", ",", " ",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "ballast"}]}],
"]"}], "\[Equal]", "5000"}], ",", " ", "\[Rho]"}], "]"}]}], "Input",
CellChangeTimes->{{3.758579149984552*^9, 3.758579152756589*^9}, {
3.758579215315279*^9, 3.7585792632375517`*^9}, {3.758579377104488*^9,
3.7585794005966063`*^9}, {3.758579591876111*^9, 3.758579692941249*^9}, {
3.758579786683756*^9, 3.758579907237295*^9}, {3.75857997701173*^9,
3.758580016829527*^9}, {3.7585801367097607`*^9, 3.758580246432004*^9}},
CellLabel->
"In[161]:=",ExpressionUUID->"74f9d168-ac48-49ad-a045-856b7c45da6b"],
Cell[BoxData[
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "0.09`"}], "+", "z"}], ")"}], "2"]}], "\[LessEqual]",
"0.0081`"}], "&&",
RowBox[{"y", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"y", "\[LessEqual]", "10"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]], "Output",
CellChangeTimes->{3.758580253096181*^9},
CellLabel->
"Out[161]=",ExpressionUUID->"873b85ac-2998-4b1f-ad2a-81079494dc46"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Rho]", "\[Rule]",
FractionBox["5000000",
RowBox[{"81", " ", "\[Pi]"}]]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.758580253383938*^9},
CellLabel->
"Out[162]=",ExpressionUUID->"473a987a-5eaa-4f3e-a244-9ab021e5c44a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"ballastdensity", " ", "=", " ",
RowBox[{"5000000", "/",
RowBox[{"(",
RowBox[{"81", "*", "\[Pi]"}], ")"}]}]}], "\[IndentingNewLine]",
RowBox[{"boatdensity", " ", "=", " ",
RowBox[{"Piecewise", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"ballastdensity", "+", "hulldensity"}], ",", " ",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
"ballast"}]}], "}"}], "}"}], ",", " ", "hulldensity"}],
"]"}]}]}], "Input",
CellChangeTimes->{{3.7585802616505947`*^9, 3.7585802713814507`*^9}},
CellLabel->
"In[163]:=",ExpressionUUID->"770d798c-8f6b-4ccf-9a99-d190c7ce3729"],
Cell[BoxData[
FractionBox["5000000",
RowBox[{"81", " ", "\[Pi]"}]]], "Output",
CellChangeTimes->{
3.758577757394786*^9, 3.7585792886440277`*^9, 3.758579401248938*^9,
3.758579497604312*^9, 3.758579595506007*^9, 3.758579705380847*^9, {
3.7585798933506613`*^9, 3.758579908549841*^9}, 3.758579981486656*^9, {
3.758580145295993*^9, 3.758580210081449*^9}, 3.758580274131597*^9},
CellLabel->
"Out[163]=",ExpressionUUID->"92164953-55f7-4dfb-a41c-c38e03856ccc"],
Cell[BoxData[
TagBox[GridBox[{
{"\[Piecewise]", GridBox[{
{
RowBox[{"300", "+",
FractionBox["5000000",
RowBox[{"81", " ", "\[Pi]"}]]}],
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "0.09`"}], "+", "z"}], ")"}], "2"]}],
"\[LessEqual]", "0.0081`"}], "&&",
RowBox[{"y", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"y", "\[LessEqual]", "10"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}]},
{"300",
TagBox["True",
"PiecewiseDefault",
AutoDelete->True]}
},
AllowedDimensions->{2, Automatic},
Editable->True,
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.84]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}},
Selectable->True]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.35]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
"Piecewise",
DeleteWithContents->True,
Editable->False,
SelectWithContents->True,
Selectable->False]], "Output",
CellChangeTimes->{
3.758577757394786*^9, 3.7585792886440277`*^9, 3.758579401248938*^9,
3.758579497604312*^9, 3.758579595506007*^9, 3.758579705380847*^9, {
3.7585798933506613`*^9, 3.758579908549841*^9}, 3.758579981486656*^9, {
3.758580145295993*^9, 3.758580210081449*^9}, 3.758580274135201*^9},
CellLabel->
"Out[164]=",ExpressionUUID->"b1ed703c-099c-428f-a11e-a529c0c2b747"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"boat", " ", "=", " ",
RowBox[{"ImplicitRegion", "[",
RowBox[{"True", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", " ", "0", ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"z", ",", " ", "hullcurve", ",", " ", "2"}], "}"}]}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"RegionPlot3D", "[",
RowBox[{"boat", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Yellow", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}], ",", " ",
RowBox[{"RegionPlot3D", "[",
RowBox[{"ballast", ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.758577664628949*^9, 3.758577801710759*^9}, {
3.7585778521727247`*^9, 3.7585778524221573`*^9}, {3.758577892082634*^9,
3.758577900787339*^9}, {3.758579267550704*^9, 3.758579283653941*^9},
3.7585794136324472`*^9, {3.758579454387364*^9, 3.758579486677218*^9}, {
3.75857977140774*^9, 3.758579771941877*^9}},
CellLabel->
"In[165]:=",ExpressionUUID->"a4a81701-efca-48d9-b1d5-c40d666a038b"],
Cell[BoxData[
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "4"}], "\[LessEqual]", "x", "\[LessEqual]", "4"}], "&&",
RowBox[{"0", "\[LessEqual]", "y", "\[LessEqual]", "10"}], "&&",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"Abs", "[", "x", "]"}], "3"], "4"], "\[LessEqual]", "z",
"\[LessEqual]", "2"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]], "Output",
CellChangeTimes->{
3.758577771757537*^9, 3.758577802209641*^9, 3.758577853175499*^9,
3.758577901125265*^9, {3.758579409251255*^9, 3.758579414700008*^9}, {
3.7585794671544313`*^9, 3.7585795007220383`*^9}, 3.758579598837681*^9,
3.7585799233473*^9, 3.758579985528222*^9, 3.758580213222468*^9,
3.758580279507743*^9},
CellLabel->
"Out[165]=",ExpressionUUID->"3f28347c-4a6c-4ab0-85dc-0712be0da183"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1mbFu5FQUhr2AXNEYRpaQRkK2vPsIQGeXG0oeASkNYoG3gAqiiGqLbXmA
RQHRsMojTEPE0BCtUizNyASLkE2C7Tv/ufn/4zvFjvLN2e+ee+69x/ZM9emX
nxy+kWXZBw+y7M3x/Y+TJ9uTJ9e/ZvvXx8fNwfGjy3b+45sb4wcTb66M/zT9
t+1FC/775Dm8tfht8BpHPPgc9NGdxc8fn9wYRzz4o2mgp68tftZshzB+lr1A
/P7jTuelXOM5z8HlCY58eNzBjasc/lCvB536wdUPvpxn7jzgy3nm3XKeufM/
nP/j284PDj/Pq0jMq3DxYbiViwfX/MGRJ9enSNSnND/XoUzUIfL533GffzEL
3ut0n4OrH1z9KR7que5w7rj+a+cHT3mUh/f3nR9c6w+u9QdP+ZWHelWd9hNw
rSf48v6pEueiStShTtSzTuzn2vnB4Z/X7xn6SdM18+eXLfeZxsblftV06Feo
A/hy/2wS56JJnIvG8vx+Tqy3/jbr//ytBd/HZSme8izzwfm174Gjjy3Hx/4D
jj6D+K+msG//4/wP+pb9hfOH6JXxeb0e/i3Xqa3kUybylL4xergPRA84jXt4
JXXeuXj1cx+IfnD4f54+fvcfqc95iK/+lfn+Zflw39g5v+bDfSPmA051G8fl
+Dgu942d8+i43B+2su6VqwPxsQ4Yl/vGruU61+aHBxyemT8f5D7kQupZO3/4
u3F+8GU/+saFrGPj6gmOcfm8wN+3b01/Hr2SfXJqnPrGyEOdz40/nj54+YNx
eFIceT4O/QrrilfH4w6JcQc3rvYZeKjP3POAwzP35192Er+ROuTOA64ejt+4
eM2T+ts9Pzj8PK8iMa8iMa/CzSuksXIecPVwvNanTNSnTNSnNA/2A+ar9aH+
ec8Prn6O37j45fqvE/VfOz/Hb1y8+qkf3vOD637WvsfrXiXWvXL7hPuVzqt2
8dwfdD80if3QWB1wkLlvvGMcL3D2gG9cPPoG+wfn5/PrOerJntzF6zkF53Oq
/sLx8Fol/KXjvG8j5/3mueap+4fvfxq7Ph7trzPaz8HhA6/DehnHeh2F65Fx
rBf7B+fXPszxuePaD9lTOI76L/tLx7Wf8Lhrx/X8cj5VkmNd2F8n8o/njvdV
Y/vh9m58ffeq1es1OK/X6d7ft/pcAE7xI2d/vC6zJ97/I57P46n44z5kf7zO
guv1kf2F41yfU9m38foFrtcjcO3z4NzPI+f+rJ7aOOqgz5WcZ+yrn4f7N+G9
e96E5yzcZ9r64j4TnM/ptv0x3H/K/jk3zvtnz58PFo/7UnDEg5+F+1LZvzuZ
V3yOO9s/78KP52hwxIPPdXv6WsYdWq7D0C7Pd2iX5zW0lL/lM3A+ox/7XP28
/6MfXP3g6ufv9zT/3PnB4UedOb43D5+v6AFfXsf4fAE/e3qpQ5GoQ+Hy5Phe
9uHKecDh4etRfD7i/bYyP++r+L0N17lM1LlM1Ll0+fP1PXrA1cPxul7rxHqt
nYfjo4f7WPSAq4fje9n/Fe9PW98qsb6V8+hzN8+3Tsy3Tsy3dn7eD1vZV01i
X8Xn7s+mt2exL83hx5fG0X/A5+vR1zcWH+Z9ZRzx4OF83UrfvjbOffs6eD68
s/j57eTGOOLBOf/B8udx4+8d7I+/d8CDfqUe7ofRA76cT94t1y3vqG6WT+48
6D/qAdc66+8a8OvvGjzfwvnB1Q8OP++TlfOAqwdc8wRfrmdpfr4+xu+fedwm
UefS+RGv666/g3Ce8ftqrk/8np/XpXacz++1fI8U73/4+/l4Hg9C/IuMX532
f/D/AZsc/cY=
"], {
{RGBColor[1, 1, 0], Opacity[0.5], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData["
1:eJxNmHucz2UWx78/l3FvGPfLzJhxyRgxxqWLrGyJ0CqxZSOyu0ItotReKqml
stoi7QotSphlKmEXi9zNaoVRbWktu2FrI7suq11bPe/X9/19+f1x5jnPOedz
znnO83zn95wnb+T4geMqRFE0OvypGMbOqSi6KoxhiKoE6hKYamGsGsVy9NhX
VMZYKVBlKUNcdXlsauinun7x0zpQzUC1A+XLg6ulz3yxlRwzlFXWtk6gywJl
BcqM4hxriK+mrl2g7EDNjVNLXG6gZuobBaofKCdQXfX1pCx1jA3ksWloLvWV
5yhrrLyxfpsEamq8fPkmxs6Rb2SumcZprF2+OdeVzxaTl4bP1ncLbdrJ51rj
q9kv64e+yFq01LaV8zx1YC8PVKAN+n6BegS6Tp9t3Tvwhdp3dF6sTQft2gS6
Ql07bYnRXl2BskLjF+qrSD/kfY25tEmLgc9Ogcrl22s3VtxV8qy/m7qq8vjv
EqirPq5M83WlumL17Gk992iseOy6a/stY3V2zdeK664use2irpvzcudFyqo6
L3f+cKAHAj1knHL93RBoUhSfk57iJrhH8wINkr4faHigwfLIbnHeJ9C3o/hb
7Cn2evcY/zXUI78pUO9AvZz3duwlBl/8P+CbzhSfZa3QIef7uDGKz2uWfAPz
GxboDm3HmuNdyoY5/655E7d/oL6BBjj/TqBbo/j83hzoNmUDo/iMjjWH26P4
LGM7RD0xhkbxGUT/PWPdqW6QOfYz5k3WcrC2t+gfTFv5JOadyoeLGSlmdJqP
8a67g5i26sGOUDbCeXtzLReP3T3mNsg1Y/sDdZ3Fd3Beov0o+R8GutuxRBqW
Jhup7Vh9jhBfonyUedwjZrgYbMekxRyjD85oVdfLyJmB76mO8/ajQPcGui+K
z/J9zns4vy7QOPl7Hfspn6j9/VH83aCbbOwx5jXJOBPU99JmnjjwD6b5uFo8
tbxeux7We6A1f0gfPw60K9BbgXZH8Tn/SRSf9Z9p91Pt+IYekx5RfqP2OWl2
6F8MtDHQr6L4/D0mfor8VMe+8k+qeyLQo/p6RB3fzs+NMS2Kv5entJ0e6HFt
E/xU7ac7Ph3oGXHgZ0bxt/TrQDPUz3S8Tf7ZKP7mwD2n3S8DPR/F3xz62cpm
6WuWc9b8gjWYo5z5XdoNMa8BxhyqX76RX5g38Uq0T3Av6KttOIOtAx1W/qK6
A2LGSuXKXoriMzo30PwoPg+lUXyuOFO/ieJvGl0f7bEZp/8S93JBFJ+zlwMt
iuKzAnZhFJ+VxVF8Fha5V8SbKO4V9+lVif1e4n7kiMHvw/pb4h6/5h5gt8w5
NVoaaIUxfhtouXuyzNzRrXSPNrqHc+Rnu0cblT0vvtz9m+m65+mDWq1yDXwn
r5vrG8ZeoGy+tn2sywTzXmp84r1pnVaJX6iMb5pvZ7IxqNHqQGtc81rxfwi0
wTl+fyeh+73jOvn1rmuaOHRlgTab9ybXt0IZ/LZAb8tvcT2J3WZ9bDDGSm2x
2+58q7RS3CZrs9Wcysx3q+vf7rzMNe0Wu0sdtdkprVS20/rtklYq223NypQx
/lGecYe0J9A7yvYoW6P9aufb0nzs0Xaae5qXimVl+lkrn/j4k/J35PH350BH
Ah1Vtlf5OjFJbfaq3+B8nXtXpmyZeSxXtj/Qu1F8djuEvAoDfRj49435nnu4
RT12XVMx9l3jvec+HlS239xK1X0gHdTvXu0SG3QfGq9U/lCgvwX62DWXqv+r
uL8H+ksUfyuH9L1N/fuOR6w3NlmpeG+WWOcj+vhEOhHoH4E+0l+p43HzOKb+
U/P5RNkJ/ezQ/mPzOqaPo2JKlX0kf1L+M3H4+WdaDPjPpVJln4k7JX/K/MB+
kYaBPy2VKjspf1b+X+JPyePnvPw5sf8OdEbcmTTsOe2I+x/tTjh+oS3yC4Eu
Bvpa32C/FH9O/rzY/6Zh4P8nnVV2Ul9fShfTsP9Pw8B/JZ1VdtIcLsojLxHL
JTnBwKeks8ouaH9GbIVU7Otr+SQH9r9iKib8JL4r6Q9s5VSMQZ4RqIrzyvqp
ZFzsG6bis1tXH9hW1U81MVA1scSvrl/4DHMBh7xGKv7fW8N5VWU15c8av6Z8
Eos6HXDtB4zNvSEzjLWNjZw7Bd8Y8jr+H0HO/wvs+SYuC7Ja4uEhvhdkrLOB
687yjlxbfw30iR3fYn1rg109qY4+6qqrZ20OeE4yjdssFeMPG5dabbR2yPkO
GqXiNxveZDLENk7LD76JRKyG4pqmYmxT/cM30z7xkS0uW2wTsTnicsQmPnL1
Ad8iFc/BNk/FvyNg88Xla5ejHvuWxs1V1lIc/BWBCtzDfMdWqZgOR5f8tU7z
BX+5PhjbiCtIw8End8y2noVC7RN8O7GM/B61cWTeQVyBObYXU6h9e22wz9MP
uiJ1RerbK++orKPyIv2ejy7lV5ym76TvQufF2rT1PDVynfXVdxXDex3vdxWk
5A2PM1RZvlgMsZDzFtHF88b7QzVt8/VFHp2MwXmsqR473vSqyPMGwVsa7zW8
ozV0Xke75D2usTLe1nhjq6ct8/rik/e/etry9sTbEW9U3LWb6Y93Kfpz3qGa
R/E7A+9V2WKaSbnGRp6nbS3j1xRToD/eyIpcP7+L/M4dN0ZxWi7dtKPGPa0j
+i7qedfqqgxb+plrlF2rHRj64hrSDdaRNd5srvS8vIkkfS/9XfIGw0hvyTtV
d32DudVasKah1gj8EPHoblfPnZ1elT6ZdxPeSgY7pyein6Hnp/+in+Ktgv/J
9HS8PdytjDeI5G2D94lRysifPmS8/Hj90/NP1O9k4yXvB4z3W5tJ1uUOYw5R
96B43mhGm/cD5ouul754P+jtOnu51kddG/i55kAfTz9Pr08v/rh2yKZEl/rz
J9XRpz/lnN6IXoa+Lunbn3APn3E/6MnozWa4B0+7f9PF4WuquCnqZ6gfoN/+
yp4Tg99n3cv+4vtao5nGQUd/ONRa0tdlWaMF1oCavayMPpzeco51oZdO3n7m
u3/0lvxm0bfzxlPiHuB3URT30KxnifVh3bPNm9q9Ym1Zw2vash8LzQXMq9rO
MpfZYhZrS12XuX5ouevkO+U3v5O2b+p3hWt4yXXTP8513a8rw+4NZeS4Sh/k
8pYy1rRaGT4265t60AcudU1rtKXe06wLurXqibPV2PvF73Ad610Duk3GYR3b
xWFHf7FNHPgyc9xl3hvdF+5T5Ltb/Xrz2Se/z1hJz4kd/cQRY7wdxT3UFmX0
QPQ33I+4Ux12Ts+U9FgfRJf6tkPaktNO15H0SEnPdNA4i91j6kx/c9SY3Hu4
V3HH4h7I/2R6F3qVY9rSe3yqjB7gc2X0CfzOHne/2SvOAHd97tT0DNy/uadz
h+dOyt2zisSdNJK+0hbMaeNkqOOuC/6CvquLR7/PmvMbmvQzp90j9oeY7NVZ
59yXuNOxbvLmd557Z6467mN9rH1t68J9M0s77pXcazOVYXPCOrG33L2y9ZXc
pVqaJzmWR5fuZMQv8L7RSlvujdnepcC1MB73ac4Ec2LkegdqZ5xvAKkXQsY=
"]]],
Lighting->Automatic]}, {}, {}, {}, {}}],
GraphicsComplex3DBox[CompressedData["
1:eJx1WkuIHFUU7fipmI+LwqbAUDF0WYoICoKIIM5rd7pQjAgiiIgYVyYRNRtX
URClERMEQVpEsDGSWUiwzYzE0cRMTFyoqASMSVyIooPfXQcFwZ6pPre45947
DIScOZx73/289+q913t09307Lup0Oj+s63Qunv574+6XH3n76PhoZ/Zz54/P
dt974EAaH7z55/PbDgl+wxpvOe245Ir/3uwuHF3ceW5h57lf0okD3+5/+q2P
04Y9967fs/K+8NNHe8/cv+V4gj74H171wu/bn/mUdCaio/kT4V+47qF9x79c
IH/GonPXq/X0d12fdYCzXehMvZ7+HhL9xm7WZ33gvp+Z0b9mzfDmPusDZ33g
0Nfjyo0OcOhs+m705O0bF2VcW0/fsfX0hkWjw/oNu2v0gfv63T702e6F7y89
cWDjosnXr3OrBXHE2GV/mngWxh/g7A9w35+6D39Yn+3uWoUXrjR2gbNd4Bxn
4Kzf5LcM6qE0+sBZHzj0T1127b+3ffMB1fMx4Z9fdWfnNmMXONsFznaBs12t
f4zqrSd2oQ/cr89eOK6mfuYpDlUQzyqIZxXEswrs1n3Y1fNk3cc8qeu5Dvqo
Fn9YJ8I3Nn4bHb+PajMvAce8tL3xS+bhxw8v3fT8wTcER5wZxzwMHPM85hPM
86zzcP+J6y9/bZnWha7wgaMfGUcfMY76Zxx1yDjqinG9jozEf9SDH586xJFH
xpFHxpFH7U8dxLPuI54rTT1KHje/dPc7vRf3C45xMQ7+ank/+M8Jwieig3Uf
ONZ95rMO1lnWAc46wH1/MqOj12X2JzM6WE9ZR6+/y4bvjysPxpUH48qNDvLo
56srfN53NXUypPEWho9+YT5w5qOPwGfcj09pdNB3rKPXl2WKW8/wgTMf/ej7
WRm+7q+hiT/6kXH0I8//WNdYn+MDHPH56ovpz9K7lMfBbH4eST9ueeqv8abP
nxMcfODQAb+8+vWVvx/7jHQmyedPDB99x3bRR4yjLyI/p+KHl/5k/dzwgTMf
9e/rdw0f9e/7XwgfcdB90cYfOOsAZx3dLwPys+5z/HVfDATX9T8g/crguj6t
XfYTOPLe1OdQ6me6uEw93SU48sg46odx1I/PzwyO+onsroVp30nSzwN+N7Bb
GBx59P0pDY58+fwq8KcWnNdx7Csa/kDwtX/+OGl0dBwGEh/NH0icGUecGUc8
59YmvnsMznz4w3zEH/xZHSauw4Z/9hPU2ys/3Tr9vWUvcAwJOP7P/N9m+278
Hetmh36a+fxUYh3g2p9J8u1OjJ/Aff2J0UdfsD7jzPf9zIwO48z3/cyMPuqE
9Rlnvj/ePBhvHow3NzqoK9ZhnPl+3IogbkUQt8LoYN5gHcaZ78e5DOJcBnEu
jQ7mJdZhnPl+vnpBvnpBvnrBuKpgXFUwrop15iI/G7U6yHttdGBf8wcJ8wDN
Y9IfjIO/9keZD8/O+fMJ+BPSB5/nh0FCv7O+Pw9AP+v7+tzXg4Q+Zb7fv/CH
1wX4w32KuHUN3+9H+F8E/nPfDRL6iPl+f2G8ZTBe7qNBQr1x3lHnjKNu/frh
dRxx4PocSr3p/UO7vmv9odQJ7TdEh/ZLKdh3pWDfJXn39c3+KgX7qxTsr1Kw
v0rB/kriz+NCPH0/2/0S9iHB95TELcLp+0L6mnHkxednBg++mwT39c33keTF
t1sYnL9ftN3S4MiL708v8Kf93vm6+e6Q+OM7BTjiDBz7Oj6/wvkZ+HRuKTjO
wVgH391sF99BvJ9kPvLu+9mej4GPemA+n4Np/czw+bwLfNQJ8/lcS/uTB/7k
ho+64nyhrnw/C6PD39fgAwefccRfj6s0fNSn738dxKcyOuBHOqiT2TkP1bOc
O1E9D6U+g3N14QOfneeTzhFjl861hM+4rlv2pz23Zz7r6HpudYCzDp/rav3M
6AD3/cmMjq7/ocF9/3PD53NaHc+u4QP3x1UYvr6XbPl8Hqv9L018gHN8+HwV
fOB+Xsz5atLnS2y3kvsFHYfa8IH7dV6HOojP+uachOp8JLiu85GsC+Dj3o3X
C+DcX+CxXdyzsF3Gdb+wPxPxB3zdFy0fOPuP+mcd4OyPrv8RxaE2OuCzju6L
kcH9+HQNH7jPrw2f7/vgP+of6z5w1DnjqHPGUc/Aed+O/TavC1iPOJ7Q4XHB
/9l9Aa0X84LreV7urwWn+3HB6T2D4PSeQezSewPh07228HGvwX4yrteXebI7
SfCfcbar15dWBzjHATjd1wvujysz+sDpXp7WHXknIDjb5fc/sKvXqdZu8P6H
+nds+H7c8iBu5l0Q9fWY4pkH8cyNXb0+ct2a90I0P4ypbrvGLnA/j0WQR/Mu
iNZfzmMR5LEwdvV63doN3gWl4F1QCt4FJX4XxHa57/Q+gevKvCMSnP0J3hEJ
7tdzafzR+5DWn+B9UQreFyV+X6TrxLzXSsG7I9rncF/0gr7oBX1h3iMJHtn1
81UF+TLvlAT389W+U9L9Zd7/CO73b2381Drc1+b9Eq3j3Ne1eU/F6w6/L9Xr
cvteJbo31/eY7f1RdA7sn1vOftrzOrmfAp/fDWJcHfqhc2k5H/Zxc68k570+
39zvyPmtr2PuWeQ81tc39yBzwb2GnKMyHtw7zKEvfB1zLyDnpf69T4wjX/8D
bjlL1Q==
"], {
{RGBColor[0, 0, 1], Opacity[0.5], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData["
1:eJxNmgu4llMWx79Xp3KpDkqU6khR0v0yaqKSoiR0UkQpRlLUUbqPM04qdDSR
CqUbpUgXp0IulRJmmMidaRhmXOY+wzCDY8ysn/f3zvmex3r2Xmv912Wvvc/X
u9fW9MqS4gmH5HK5x6vlcvFfLgmC7xh0aNAR8gXyzOs5b5BLbWoENQxqFlQU
1EK7juL3JSkOzCn6ej5J59XUN1TOvIHzDF8jL85hyguDagUdGXS4uJrmVisv
90Pla4qp7nhYnr/aebFqK6un71p5NuSM/ijxdZQfbqxC18waCtSdIr62c2x6
Oj9GXf2gukHHSk2CGqs7xlj1xJDT0dp0VHacdvg8Xpsi5Q3ENhLfSGxjfTYQ
1zyoZdAZ2jZ0flLQiUEnBzXV7kT9NNVnoTl1NIcTzONo862rr+PV4aOZfqAW
ef5PyvPTXHwTc2om31x/x+gz27uW6grcb/atQ1DboGnGaB10qtg2+mml7lRz
KRLXRr9txbQzt9Zi2ovpoJ92+ujsHrfVvov4XyWpfJo6cJ20a+e8o36LtAP7
I2N00aa9cnwNCuqq3WnSWmXdnJ9mXu217+b4Y3Wd8rDIuqsnX/jTnZPTucYk
dg/zYO0DgnoFnamsh3kXiK0j30M8vwuJdgXyfZwf7v4ViZ2mvI66Avf2ef/O
sDsrl56dVtaiQBmxi4P6B/VzfnZQX8dzxJBHb9dwlvqeebjMzzl5dv2U97cu
PbUt1q5YeX/n/fLs+ufFPc/YxdYWm7uDKoNudF/Yk/ODLnQ/qMkFyuGHWMMX
khSzOWiq/rvqY5Axplkz8BcHXSRujDRY2WbjTdMv+BeTFNPLnEcEjdIf8mFB
Q/V7WdClzi/Nwww1Bv4uUY98uPaX6reP4xXGGGOeZzq/Mmik+MvFjlE23BzH
iMf+J/pkfpU89bguqMT1jNUG2Qzlo5WN1eZq9dc4wo/Lk413jmxC0PX6uFZ+
tLEmKBvrONpaL7L2vbUFNyWX7v8Fyjgzk5xPystxtHUh94nmX2ze2TonKmO8
wflUfV+ov4FBk6UF+p0hfqKYycqRTdfPdNdQrO7nQeXaLlLPmeZszwz6qSMY
zkJp0E3ip+sb/WAxA+Qr5X+mD+a3BM3JpeerPFd1xmbn0nM7xLFUWan8bGOW
aoePm4MWK0c/XN0wx1lBZc7LzOMy8Yuly5WV62+WewM/Ms/XUPGcySvUlRtz
sTJ88W8Av6H8Js5VN9u9oi5rtbvNWswTc6sjZ/Nq9+QO9zXTzdX2du2RjdOG
+Xj5xfq4yvl893W+/Dz9luftPWseLd2hnPO22ZzvDFqoHeNduaozt1D9DHNY
rPxOfY0Wv9D5AvkZYheJu1Mdv6uclyXya81jijnBV8SZ2Bu0J0lx7O09Qfe6
h0uD1uWtmz24zxrOdb5OHPu+TOJcLZfYnxUS9V6pzXxruMr8Viuf516tcyQO
fwPPBD0p9n7xzNcEPaBsgfMpSTrf7PorrccCddjw97LeNc12fp/E/CHrUGlN
yPt2812q/F51lcZZ5nyp9g/rr9JabHBdyB/R50ZrsynoQfWrla8St0n5KuUr
Xe9GsZu1/dr1b1RP3C1Bj1qnjerXiV+knJpslH9Qf1u12x+6x639U9ZmW9Av
ktT/Y8bYrmyb61xhPGQvJ6ldhXj8IXtCf4xPOyfeFrG71e2QsNnuup7U11Oe
jZ3WHD+7HHc7fz7oILmIezZoj7Jd4iqVP+PIGp4Tx7jPvdirv+dc3wvu5y51
+5S9KH9Q/CZHcngt6E1r/ZqYjEf/sva/DHrJOL+SR/dKHvagspedvyL+VW32
Oz+g7qAxN+rvBeevi3tF/YPaIH8DWZLWeqf4t9T9HpvQvRr025h/IP+msd4J
ejvo3aD3XOc7+mf8dd78oDz+f5Nnw/w3ntF3jQ3ufW2Rc4bBvJ+kOnx9mkv/
Jv7gGt4yl18G5qMYf2eunLkK+W3qX1XGWeVcvpSkcjCfBH0sbdcO/IEkrccn
xkb/YS71/4GyHcoP+HdFTT+Tp8Z8C2XfSru1If96oTsmqEbQ36ljjG8l6fr+
JObP7EnI3kjSkb3ao353Vockle2zRuj+Yp3+5vygI/xftXnTWH/RpmaS1rzE
PDivL2mL3T/0+Q/5t5NUv18M8i+CPs+l9uj/Ke4dab9nED9fiv8ql+reNSfW
QWz4A+7zQbFfOv9SH/8S9570hufh37mU/3XQwcQz53q/0Qdn+1v3c0oeFgxn
7hv1W8VwDr5T9p9cet44Q5/Ify3mW32vVw7mP56hj8R9Yb2+86x8r5yzcGjQ
f917LpqJ5+OQJOXZv8R8Wet72v8xl9qBYw+qJSmxBwVJWpPqSVqzr82NeNXd
d/Yf3Fd5uOryrOmwmB8ubVXGt1ulaz0q5Ed7no9wzUWOtWKsrbyWsu/1+Z15
oK+TpDLWUeh6C+WRf2vNjkzSeDW0OdJ5klTZkSO5Ngw63rGBNQFziPnW1bZA
eTVrUqgMfT0x/L3Wd14o7jhlxyqvqay6MQrNi33dbO0PFQ/f0DWTG98eZbn0
O4T8Lw/ZSH2cEtRC7ElBzZK07o2tJ3RCktacPWmkvsiaH6FtU2Od6NhUfZF7
0MT5CeKbiSlS1z6ouTJ0nDt+51437lZjn2TeLbSto/8i9wu+lXrW1lKbDH+U
OHycKuYU563EHC3uZHPJYrYWV2S+U4PaKGutvK724Nsqb+fYVuqgjHlH+SLP
AWeiU1CXoM5Bg4IuCLpQfKH6to4dHTkbJY6dxBV5Huo7r28M8v6Rsq5Jeo5P
k9i/HkHd1CGj9t2TtP7MOTvdtcdP9h0I/seeD7CNpdODzgjqqb8e2mJ3rJhe
4pqIZc7ZY36Ca+rsetur76Uvzs2ZQX0d+wSdFXS22H5BQ4POVX+ymF7i2pvD
2fLoODfnKOuX5+dc5+g4L/2d9zd+H/m+7hn5FosdIA77890HZJyhgfo+T31v
13amuZ+nvrE59tLXAGMN0AdzzksH4w+U7+u8nfz5+sx8n2/cwdoVmx/yS4Mm
BF0vHt1FYhmH5M07y48IGh50mTW4SDt0nO2LHUucg+0mnlyvDbpGOWeLc3WJ
9heb1zBzm+oIf7n44frBx1VBP9H3lUGjHa9y7O18VNAVSXp2wfZU31d9hrta
H2Plr9FulPuD/bigMc7HqBvlPPu74DydrWycMnrp9N7puxN3vLVo5B5cJz/e
+EPdl2HOx4m5TvxQ8y/RpkR+kD6v0wYfE4Mm5eHG6mOi+muMPdb9LtHPzCT9
TaD2/JtfoQ6baUHTlbNPu9QNdj8ni7tB/XRthimHnxH0U+PcoHySMWeqm6rN
dGUjtOO9gTeJlv5ugZ0dVBp0Y9CtQbcFlQXNsSY3Bc3SnnNzs/zPxM1ybKS/
m/U5Rzm4W8wPeXdjzBHL2ZmrfI54aro+6H51nLF5+igPul2f8+Tnuwby/7lx
b1M+Uvw8/S7QhvEOdYx36gObJeY61zjktlDft4udr6xMOb7vyvPLfJFYxsVB
d4tfKP4ecejuDVpqrLvFLBKDbpm4pfLLg1aIv0+bpcpWKitTvsy1LTHucv12
N3dqtUr7lcofDFotlelvrHuyXNlE932J61ys7WrxK8Q/oF/GNdrif51xS82x
TBl+12qzxnmpWPxzRm7SH+fkoaANYh8W80hejI36XKccfqvjI/rGvsI1bsrz
y3yzuu5i16jLYm3Vz8NitwQ9Kp/NK4xBzEnmsz3oyaCngh4X+5g+we9UXqEP
cttmTlu0z/BP5K2J+Q51+H7avLZp84w65Ddos0P/T4rj94C/nVvFV5gLOH63
duv72STthUIl4p7T9159Pqvfp8XtFVOhb96ZeYvnXY41TzEG7+u8H/N+vlvZ
VOtSIQ45v5GTXfdOcdlbOPa8I/P+1zSXvm/zPs27N2/bvCM2kY5VNtl14hue
N2rewxuKJ1/els9Q1sIYzcTWNzb/drUydmPjNxLX2Jjc77OeE++w7bTh3yr+
TeTfQd4su6ZXrv+/0XaSeKPN9APE0POjZ0IfkLfkDv7u806LfRexvA2cp5y3
wux9F/50+bXGQ84bEO9MvMXQCx6ij0n64R2C9zbeNXgDGJVL3yegEerxe6G+
wF2sv+y9jTe4q+XxscAYa9WfJWagOt6Z6OfzfjXePHj36u1eTTMmeU/RD7Gn
ymdvP7xh3mRO5EM/nt40PfqZ1ot3z8HyzEvFYl9uPvS7y3LpPZO3AXr5y/U3
K5feO8v0u1QZbw702nn7okdLj4s+Lb3/FfqgJ7zdvaV3Sj/6Pn1Xmusi1zvd
XFaZT/aWdqP8yjzfG/RBPHp3W9xb1rtenl4cfW3u1fQO3zcmMr4vOWf0yugf
0wt+ynUgo+9FL+jZXNpbQ79L2V7nrIc+9C/0v0lfD5nDBu2JmfWX4bMeMT1m
epL0hugL0aOlv/WCMR4xxkbtN6jbJ8/f30vasVZ80Xukb0r/hx4o/dT3lP3Q
a01SGf3f/foAR3/sdWtFnbLeKiP8R7m0J0rPCtwBfaxXTi/1A9fxofl8aJ05
T0vcS3D0ULebF301+lWcHfqiWW+V3hd14ffgU/eE3iQ9rj9r/7F69u017b4W
T0+NvgPYP8r/znXsyVX1TbFD/5n7nMk4U69aU+pN/xEbeof0y/5l7elh0tOk
lvQq306q+pufa0ePjrzBIfu7WPpn/7SW9Cp/sM+l9SDOi9q8aY2mGBss8b9y
38Ai4/+F4be4tfsMnvpyT6cnUdd6/NeakEdiTaGc+ppJVR+COxTfzyOs0/fW
iryruR7u//StahizunmSX0FeLQ6xFvSO6G3Rg8v6Tcf7byT9BPoR9Gy449MX
oHfTUr5QPvOBHWesqVh80SdqpQ19nTbyYLuKz/qGrAcZ91bup1mvp4014H5L
36K266Ofwb9tZyRVvQ36HfQ3uOtzv+TOmfUy4LmrD5JvLo486X+01/5kbZqb
dx9l5DHA/LmDc6/Pek8D1XcwRjtx5+iD2FeaD3aDzSO7317hGrnDcR8f4nyw
+Z1mzbqo66ysp/WCv8i8fvh/c9z/np6bbsbhO4/v3uGeI+6Y3PO4/w8VN9z6
Z3d7zhz3cr7DuEfxncp3MN/GfINO0DffZNm321jXw3cbdzTuddz/xhmHdfNt
RJ7TJO6hfDfxbT7LPLkncFe5xzxmmDc00/z5nuY7M/veLHWdo42NHXcL7hjc
ucrF3WKe81zXSPV8r3Jvm639PLHIsrsfsuzuV25+3LXu0tdc45P74jzdHfrI
7nXw/Dv2jb/vYJeZK3/b3/nbm91/Vlh37jmrlXG34V7DXYFvfO4I94ulftxD
HlDGnWON/CZ59Ev1QezN+sqwG4yxwdqu1Xd2j9ymzSb3m296vtW5E3A3mKSM
+0J2X9meVN0ltmj/RFJ1rwLLdz33hZ3q2FPO1B7jbFH/qLKnjcO3+46k6g4z
2TzQP6ff/wHhHjsQ
"]]],
Lighting->Automatic]}, {}, {}, {}, {}}]},
DisplayFunction->Identity,
FaceGridsStyle->Automatic,
ImageSize->{668.6872189740587, 461.5858641644323},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]]},
PlotRange->{All, All, All},
PlotRangePadding->{Automatic, Automatic, Automatic},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{2.73194328420887, -1.5105136213379144`, 1.3056931077472487`},
ViewVertical->{0.08512402043571499, -0.5299749175191182,
4.236350832859183}]], "Output",
CellChangeTimes->{
3.758577771757537*^9, 3.758577802209641*^9, 3.758577853175499*^9,
3.758577901125265*^9, {3.758579409251255*^9, 3.758579414700008*^9}, {
3.7585794671544313`*^9, 3.7585795007220383`*^9}, 3.758579598837681*^9,
3.7585799233473*^9, 3.758579985528222*^9, 3.758580213222468*^9,
3.758580279718375*^9},
CellLabel->
"Out[166]=",ExpressionUUID->"59349274-483c-469a-8b58-e56c4bf9cd27"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"boatmass", " ", "=", " ",
RowBox[{"Integrate", "[",
RowBox[{"boatdensity", ",",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", " ", "y", ",", " ", "z"}], "}"}], "\[Element]",
"boat"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"boatcom", " ", "=", " ",
RowBox[{
RowBox[{"1", "/", "boatmass"}], " ", "*", " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"boatdensity", " ", "*", " ",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], ",", " ",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]", "boat"}]}],
"]"}], "*",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "1"}], "}"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"RegionPlot3D", "[",
RowBox[{"boat", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Yellow", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}], ",", " ",
RowBox[{"RegionPlot3D", "[",
RowBox[{"ballast", ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}], ",",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"PointSize", "[", "0.01", "]"}], ",",
RowBox[{"Point", "[", "boatcom", "]"}]}], "}"}], "]"}]}], "]"}],
"\[IndentingNewLine]"}], "\n"}], "Input",
CellChangeTimes->{{3.758578079222883*^9, 3.7585781750614557`*^9},
3.758578714698246*^9, {3.7585787452295303`*^9, 3.75857875195442*^9}, {
3.7585787857329283`*^9, 3.7585787886544724`*^9}, {3.7585789354761467`*^9,
3.7585789925411386`*^9}, {3.7585802985512123`*^9, 3.758580315975602*^9}, {
3.7585804044040623`*^9, 3.758580463317089*^9}, {3.758580552636219*^9,
3.758580588669528*^9}, {3.758580619360469*^9, 3.758580747985321*^9}, {
3.758581011195225*^9, 3.758581017678372*^9}},
CellLabel->
"In[188]:=",ExpressionUUID->"2b0f0e7e-b831-4281-9ce0-fce9e2893a49"],
Cell[BoxData["22999.999343111485`"], "Output",
CellChangeTimes->{
3.7585783581684504`*^9, 3.7585787893588333`*^9, {3.758578979010934*^9,
3.7585789875059357`*^9}, 3.75858031701678*^9, {3.7585804340138493`*^9,
3.758580463799818*^9}, 3.758580748979505*^9, 3.758581018324945*^9},
CellLabel->
"Out[188]=",ExpressionUUID->"07ebfc5b-1ead-4c5f-a385-068dee009e81"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.`", ",", "5.000000000000003`", ",", "0.9139751432480251`"}],
"}"}]], "Output",
CellChangeTimes->{
3.7585783581684504`*^9, 3.7585787893588333`*^9, {3.758578979010934*^9,
3.7585789875059357`*^9}, 3.75858031701678*^9, {3.7585804340138493`*^9,
3.758580463799818*^9}, 3.758580748979505*^9, 3.758581019708705*^9},
CellLabel->
"Out[189]=",ExpressionUUID->"a7449192-815a-45d5-85e9-de8c79d49724"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1mbFu5FQUhr2AXNEYRpaQRkK2vPsIQGeXG0oeASkNYoG3gAqiiGqLbXmA
RQHRsMojTEPE0BCtUizNyASLkE2C7Tv/ufn/4zvFjvLN2e+ee+69x/ZM9emX
nxy+kWXZBw+y7M3x/Y+TJ9uTJ9e/ZvvXx8fNwfGjy3b+45sb4wcTb66M/zT9
t+1FC/775Dm8tfht8BpHPPgc9NGdxc8fn9wYRzz4o2mgp68tftZshzB+lr1A
/P7jTuelXOM5z8HlCY58eNzBjasc/lCvB536wdUPvpxn7jzgy3nm3XKeufM/
nP/j284PDj/Pq0jMq3DxYbiViwfX/MGRJ9enSNSnND/XoUzUIfL533GffzEL
3ut0n4OrH1z9KR7que5w7rj+a+cHT3mUh/f3nR9c6w+u9QdP+ZWHelWd9hNw
rSf48v6pEueiStShTtSzTuzn2vnB4Z/X7xn6SdM18+eXLfeZxsblftV06Feo
A/hy/2wS56JJnIvG8vx+Tqy3/jbr//ytBd/HZSme8izzwfm174Gjjy3Hx/4D
jj6D+K+msG//4/wP+pb9hfOH6JXxeb0e/i3Xqa3kUybylL4xergPRA84jXt4
JXXeuXj1cx+IfnD4f54+fvcfqc95iK/+lfn+Zflw39g5v+bDfSPmA051G8fl
+Dgu942d8+i43B+2su6VqwPxsQ4Yl/vGruU61+aHBxyemT8f5D7kQupZO3/4
u3F+8GU/+saFrGPj6gmOcfm8wN+3b01/Hr2SfXJqnPrGyEOdz40/nj54+YNx
eFIceT4O/QrrilfH4w6JcQc3rvYZeKjP3POAwzP35192Er+ROuTOA64ejt+4
eM2T+ts9Pzj8PK8iMa8iMa/CzSuksXIecPVwvNanTNSnTNSnNA/2A+ar9aH+
ec8Prn6O37j45fqvE/VfOz/Hb1y8+qkf3vOD637WvsfrXiXWvXL7hPuVzqt2
8dwfdD80if3QWB1wkLlvvGMcL3D2gG9cPPoG+wfn5/PrOerJntzF6zkF53Oq
/sLx8Fol/KXjvG8j5/3mueap+4fvfxq7Ph7trzPaz8HhA6/DehnHeh2F65Fx
rBf7B+fXPszxuePaD9lTOI76L/tLx7Wf8Lhrx/X8cj5VkmNd2F8n8o/njvdV
Y/vh9m58ffeq1es1OK/X6d7ft/pcAE7xI2d/vC6zJ97/I57P46n44z5kf7zO
guv1kf2F41yfU9m38foFrtcjcO3z4NzPI+f+rJ7aOOqgz5WcZ+yrn4f7N+G9
e96E5yzcZ9r64j4TnM/ptv0x3H/K/jk3zvtnz58PFo/7UnDEg5+F+1LZvzuZ
V3yOO9s/78KP52hwxIPPdXv6WsYdWq7D0C7Pd2iX5zW0lL/lM3A+ox/7XP28
/6MfXP3g6ufv9zT/3PnB4UedOb43D5+v6AFfXsf4fAE/e3qpQ5GoQ+Hy5Phe
9uHKecDh4etRfD7i/bYyP++r+L0N17lM1LlM1Ll0+fP1PXrA1cPxul7rxHqt
nYfjo4f7WPSAq4fje9n/Fe9PW98qsb6V8+hzN8+3Tsy3Tsy3dn7eD1vZV01i
X8Xn7s+mt2exL83hx5fG0X/A5+vR1zcWH+Z9ZRzx4OF83UrfvjbOffs6eD68
s/j57eTGOOLBOf/B8udx4+8d7I+/d8CDfqUe7ofRA76cT94t1y3vqG6WT+48
6D/qAdc66+8a8OvvGjzfwvnB1Q8OP++TlfOAqwdc8wRfrmdpfr4+xu+fedwm
UefS+RGv666/g3Ce8ftqrk/8np/XpXacz++1fI8U73/4+/l4Hg9C/IuMX532
f/D/AZsc/cY=
"], {
{RGBColor[1, 1, 0], Opacity[0.5], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData["
1:eJxNmHucz2UWx78/l3FvGPfLzJhxyRgxxqWLrGyJ0CqxZSOyu0ItotReKqml
stoi7QotSphlKmEXi9zNaoVRbWktu2FrI7suq11bPe/X9/19+f1x5jnPOedz
znnO83zn95wnb+T4geMqRFE0OvypGMbOqSi6KoxhiKoE6hKYamGsGsVy9NhX
VMZYKVBlKUNcdXlsauinun7x0zpQzUC1A+XLg6ulz3yxlRwzlFXWtk6gywJl
BcqM4hxriK+mrl2g7EDNjVNLXG6gZuobBaofKCdQXfX1pCx1jA3ksWloLvWV
5yhrrLyxfpsEamq8fPkmxs6Rb2SumcZprF2+OdeVzxaTl4bP1ncLbdrJ51rj
q9kv64e+yFq01LaV8zx1YC8PVKAN+n6BegS6Tp9t3Tvwhdp3dF6sTQft2gS6
Ql07bYnRXl2BskLjF+qrSD/kfY25tEmLgc9Ogcrl22s3VtxV8qy/m7qq8vjv
EqirPq5M83WlumL17Gk992iseOy6a/stY3V2zdeK664use2irpvzcudFyqo6
L3f+cKAHAj1knHL93RBoUhSfk57iJrhH8wINkr4faHigwfLIbnHeJ9C3o/hb
7Cn2evcY/zXUI78pUO9AvZz3duwlBl/8P+CbzhSfZa3QIef7uDGKz2uWfAPz
GxboDm3HmuNdyoY5/655E7d/oL6BBjj/TqBbo/j83hzoNmUDo/iMjjWH26P4
LGM7RD0xhkbxGUT/PWPdqW6QOfYz5k3WcrC2t+gfTFv5JOadyoeLGSlmdJqP
8a67g5i26sGOUDbCeXtzLReP3T3mNsg1Y/sDdZ3Fd3Beov0o+R8GutuxRBqW
Jhup7Vh9jhBfonyUedwjZrgYbMekxRyjD85oVdfLyJmB76mO8/ajQPcGui+K
z/J9zns4vy7QOPl7Hfspn6j9/VH83aCbbOwx5jXJOBPU99JmnjjwD6b5uFo8
tbxeux7We6A1f0gfPw60K9BbgXZH8Tn/SRSf9Z9p91Pt+IYekx5RfqP2OWl2
6F8MtDHQr6L4/D0mfor8VMe+8k+qeyLQo/p6RB3fzs+NMS2Kv5entJ0e6HFt
E/xU7ac7Ph3oGXHgZ0bxt/TrQDPUz3S8Tf7ZKP7mwD2n3S8DPR/F3xz62cpm
6WuWc9b8gjWYo5z5XdoNMa8BxhyqX76RX5g38Uq0T3Av6KttOIOtAx1W/qK6
A2LGSuXKXoriMzo30PwoPg+lUXyuOFO/ieJvGl0f7bEZp/8S93JBFJ+zlwMt
iuKzAnZhFJ+VxVF8Fha5V8SbKO4V9+lVif1e4n7kiMHvw/pb4h6/5h5gt8w5
NVoaaIUxfhtouXuyzNzRrXSPNrqHc+Rnu0cblT0vvtz9m+m65+mDWq1yDXwn
r5vrG8ZeoGy+tn2sywTzXmp84r1pnVaJX6iMb5pvZ7IxqNHqQGtc81rxfwi0
wTl+fyeh+73jOvn1rmuaOHRlgTab9ybXt0IZ/LZAb8tvcT2J3WZ9bDDGSm2x
2+58q7RS3CZrs9Wcysx3q+vf7rzMNe0Wu0sdtdkprVS20/rtklYq223NypQx
/lGecYe0J9A7yvYoW6P9aufb0nzs0Xaae5qXimVl+lkrn/j4k/J35PH350BH
Ah1Vtlf5OjFJbfaq3+B8nXtXpmyZeSxXtj/Qu1F8djuEvAoDfRj49435nnu4
RT12XVMx9l3jvec+HlS239xK1X0gHdTvXu0SG3QfGq9U/lCgvwX62DWXqv+r
uL8H+ksUfyuH9L1N/fuOR6w3NlmpeG+WWOcj+vhEOhHoH4E+0l+p43HzOKb+
U/P5RNkJ/ezQ/mPzOqaPo2JKlX0kf1L+M3H4+WdaDPjPpVJln4k7JX/K/MB+
kYaBPy2VKjspf1b+X+JPyePnvPw5sf8OdEbcmTTsOe2I+x/tTjh+oS3yC4Eu
Bvpa32C/FH9O/rzY/6Zh4P8nnVV2Ul9fShfTsP9Pw8B/JZ1VdtIcLsojLxHL
JTnBwKeks8ouaH9GbIVU7Otr+SQH9r9iKib8JL4r6Q9s5VSMQZ4RqIrzyvqp
ZFzsG6bis1tXH9hW1U81MVA1scSvrl/4DHMBh7xGKv7fW8N5VWU15c8av6Z8
Eos6HXDtB4zNvSEzjLWNjZw7Bd8Y8jr+H0HO/wvs+SYuC7Ja4uEhvhdkrLOB
687yjlxbfw30iR3fYn1rg109qY4+6qqrZ20OeE4yjdssFeMPG5dabbR2yPkO
GqXiNxveZDLENk7LD76JRKyG4pqmYmxT/cM30z7xkS0uW2wTsTnicsQmPnL1
Ad8iFc/BNk/FvyNg88Xla5ejHvuWxs1V1lIc/BWBCtzDfMdWqZgOR5f8tU7z
BX+5PhjbiCtIw8End8y2noVC7RN8O7GM/B61cWTeQVyBObYXU6h9e22wz9MP
uiJ1RerbK++orKPyIv2ejy7lV5ym76TvQufF2rT1PDVynfXVdxXDex3vdxWk
5A2PM1RZvlgMsZDzFtHF88b7QzVt8/VFHp2MwXmsqR473vSqyPMGwVsa7zW8
ozV0Xke75D2usTLe1nhjq6ct8/rik/e/etry9sTbEW9U3LWb6Y93Kfpz3qGa
R/E7A+9V2WKaSbnGRp6nbS3j1xRToD/eyIpcP7+L/M4dN0ZxWi7dtKPGPa0j
+i7qedfqqgxb+plrlF2rHRj64hrSDdaRNd5srvS8vIkkfS/9XfIGw0hvyTtV
d32DudVasKah1gj8EPHoblfPnZ1elT6ZdxPeSgY7pyein6Hnp/+in+Ktgv/J
9HS8PdytjDeI5G2D94lRysifPmS8/Hj90/NP1O9k4yXvB4z3W5tJ1uUOYw5R
96B43mhGm/cD5ouul754P+jtOnu51kddG/i55kAfTz9Pr08v/rh2yKZEl/rz
J9XRpz/lnN6IXoa+Lunbn3APn3E/6MnozWa4B0+7f9PF4WuquCnqZ6gfoN/+
yp4Tg99n3cv+4vtao5nGQUd/ONRa0tdlWaMF1oCavayMPpzeco51oZdO3n7m
u3/0lvxm0bfzxlPiHuB3URT30KxnifVh3bPNm9q9Ym1Zw2vash8LzQXMq9rO
MpfZYhZrS12XuX5ouevkO+U3v5O2b+p3hWt4yXXTP8513a8rw+4NZeS4Sh/k
8pYy1rRaGT4265t60AcudU1rtKXe06wLurXqibPV2PvF73Ad610Duk3GYR3b
xWFHf7FNHPgyc9xl3hvdF+5T5Ltb/Xrz2Se/z1hJz4kd/cQRY7wdxT3UFmX0
QPQ33I+4Ux12Ts+U9FgfRJf6tkPaktNO15H0SEnPdNA4i91j6kx/c9SY3Hu4
V3HH4h7I/2R6F3qVY9rSe3yqjB7gc2X0CfzOHne/2SvOAHd97tT0DNy/uadz
h+dOyt2zisSdNJK+0hbMaeNkqOOuC/6CvquLR7/PmvMbmvQzp90j9oeY7NVZ
59yXuNOxbvLmd557Z6467mN9rH1t68J9M0s77pXcazOVYXPCOrG33L2y9ZXc
pVqaJzmWR5fuZMQv8L7RSlvujdnepcC1MB73ac4Ec2LkegdqZ5xvAKkXQsY=
"]]],
Lighting->Automatic]}, {}, {}, {}, {}}],
GraphicsComplex3DBox[CompressedData["
1:eJx1WkuIHFUU7fipmI+LwqbAUDF0WYoICoKIIM5rd7pQjAgiiIgYVyYRNRtX
URClERMEQVpEsDGSWUiwzYzE0cRMTFyoqASMSVyIooPfXQcFwZ6pPre45947
DIScOZx73/289+q913t09307Lup0Oj+s63Qunv574+6XH3n76PhoZ/Zz54/P
dt974EAaH7z55/PbDgl+wxpvOe245Ir/3uwuHF3ceW5h57lf0okD3+5/+q2P
04Y9967fs/K+8NNHe8/cv+V4gj74H171wu/bn/mUdCaio/kT4V+47qF9x79c
IH/GonPXq/X0d12fdYCzXehMvZ7+HhL9xm7WZ33gvp+Z0b9mzfDmPusDZ33g
0Nfjyo0OcOhs+m705O0bF2VcW0/fsfX0hkWjw/oNu2v0gfv63T702e6F7y89
cWDjosnXr3OrBXHE2GV/mngWxh/g7A9w35+6D39Yn+3uWoUXrjR2gbNd4Bxn
4Kzf5LcM6qE0+sBZHzj0T1127b+3ffMB1fMx4Z9fdWfnNmMXONsFznaBs12t
f4zqrSd2oQ/cr89eOK6mfuYpDlUQzyqIZxXEswrs1n3Y1fNk3cc8qeu5Dvqo
Fn9YJ8I3Nn4bHb+PajMvAce8tL3xS+bhxw8v3fT8wTcER5wZxzwMHPM85hPM
86zzcP+J6y9/bZnWha7wgaMfGUcfMY76Zxx1yDjqinG9jozEf9SDH586xJFH
xpFHxpFH7U8dxLPuI54rTT1KHje/dPc7vRf3C45xMQ7+ank/+M8Jwieig3Uf
ONZ95rMO1lnWAc46wH1/MqOj12X2JzM6WE9ZR6+/y4bvjysPxpUH48qNDvLo
56srfN53NXUypPEWho9+YT5w5qOPwGfcj09pdNB3rKPXl2WKW8/wgTMf/ej7
WRm+7q+hiT/6kXH0I8//WNdYn+MDHPH56ovpz9K7lMfBbH4eST9ueeqv8abP
nxMcfODQAb+8+vWVvx/7jHQmyedPDB99x3bRR4yjLyI/p+KHl/5k/dzwgTMf
9e/rdw0f9e/7XwgfcdB90cYfOOsAZx3dLwPys+5z/HVfDATX9T8g/crguj6t
XfYTOPLe1OdQ6me6uEw93SU48sg46odx1I/PzwyO+onsroVp30nSzwN+N7Bb
GBx59P0pDY58+fwq8KcWnNdx7Csa/kDwtX/+OGl0dBwGEh/NH0icGUecGUc8
59YmvnsMznz4w3zEH/xZHSauw4Z/9hPU2ys/3Tr9vWUvcAwJOP7P/N9m+278
Hetmh36a+fxUYh3g2p9J8u1OjJ/Aff2J0UdfsD7jzPf9zIwO48z3/cyMPuqE
9Rlnvj/ePBhvHow3NzqoK9ZhnPl+3IogbkUQt8LoYN5gHcaZ78e5DOJcBnEu
jQ7mJdZhnPl+vnpBvnpBvnrBuKpgXFUwrop15iI/G7U6yHttdGBf8wcJ8wDN
Y9IfjIO/9keZD8/O+fMJ+BPSB5/nh0FCv7O+Pw9AP+v7+tzXg4Q+Zb7fv/CH
1wX4w32KuHUN3+9H+F8E/nPfDRL6iPl+f2G8ZTBe7qNBQr1x3lHnjKNu/frh
dRxx4PocSr3p/UO7vmv9odQJ7TdEh/ZLKdh3pWDfJXn39c3+KgX7qxTsr1Kw
v0rB/kriz+NCPH0/2/0S9iHB95TELcLp+0L6mnHkxednBg++mwT39c33keTF
t1sYnL9ftN3S4MiL708v8Kf93vm6+e6Q+OM7BTjiDBz7Oj6/wvkZ+HRuKTjO
wVgH391sF99BvJ9kPvLu+9mej4GPemA+n4Np/czw+bwLfNQJ8/lcS/uTB/7k
ho+64nyhrnw/C6PD39fgAwefccRfj6s0fNSn738dxKcyOuBHOqiT2TkP1bOc
O1E9D6U+g3N14QOfneeTzhFjl861hM+4rlv2pz23Zz7r6HpudYCzDp/rav3M
6AD3/cmMjq7/ocF9/3PD53NaHc+u4QP3x1UYvr6XbPl8Hqv9L018gHN8+HwV
fOB+Xsz5atLnS2y3kvsFHYfa8IH7dV6HOojP+uachOp8JLiu85GsC+Dj3o3X
C+DcX+CxXdyzsF3Gdb+wPxPxB3zdFy0fOPuP+mcd4OyPrv8RxaE2OuCzju6L
kcH9+HQNH7jPrw2f7/vgP+of6z5w1DnjqHPGUc/Aed+O/TavC1iPOJ7Q4XHB
/9l9Aa0X84LreV7urwWn+3HB6T2D4PSeQezSewPh07228HGvwX4yrteXebI7
SfCfcbar15dWBzjHATjd1wvujysz+sDpXp7WHXknIDjb5fc/sKvXqdZu8P6H
+nds+H7c8iBu5l0Q9fWY4pkH8cyNXb0+ct2a90I0P4ypbrvGLnA/j0WQR/Mu
iNZfzmMR5LEwdvV63doN3gWl4F1QCt4FJX4XxHa57/Q+gevKvCMSnP0J3hEJ
7tdzafzR+5DWn+B9UQreFyV+X6TrxLzXSsG7I9rncF/0gr7oBX1h3iMJHtn1
81UF+TLvlAT389W+U9L9Zd7/CO73b2381Drc1+b9Eq3j3Ne1eU/F6w6/L9Xr
cvteJbo31/eY7f1RdA7sn1vOftrzOrmfAp/fDWJcHfqhc2k5H/Zxc68k570+
39zvyPmtr2PuWeQ81tc39yBzwb2GnKMyHtw7zKEvfB1zLyDnpf69T4wjX/8D
bjlL1Q==
"], {
{RGBColor[0, 0, 1], Opacity[0.5], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[Polygon3DBox[CompressedData["
1:eJxNmgu4llMWx79Xp3KpDkqU6khR0v0yaqKSoiR0UkQpRlLUUbqPM04qdDSR
CqUbpUgXp0IulRJmmMidaRhmXOY+wzCDY8ysn/f3zvmex3r2Xmv912Wvvc/X
u9fW9MqS4gmH5HK5x6vlcvFfLgmC7xh0aNAR8gXyzOs5b5BLbWoENQxqFlQU
1EK7juL3JSkOzCn6ej5J59XUN1TOvIHzDF8jL85hyguDagUdGXS4uJrmVisv
90Pla4qp7nhYnr/aebFqK6un71p5NuSM/ijxdZQfbqxC18waCtSdIr62c2x6
Oj9GXf2gukHHSk2CGqs7xlj1xJDT0dp0VHacdvg8Xpsi5Q3ENhLfSGxjfTYQ
1zyoZdAZ2jZ0flLQiUEnBzXV7kT9NNVnoTl1NIcTzONo862rr+PV4aOZfqAW
ef5PyvPTXHwTc2om31x/x+gz27uW6grcb/atQ1DboGnGaB10qtg2+mml7lRz
KRLXRr9txbQzt9Zi2ovpoJ92+ujsHrfVvov4XyWpfJo6cJ20a+e8o36LtAP7
I2N00aa9cnwNCuqq3WnSWmXdnJ9mXu217+b4Y3Wd8rDIuqsnX/jTnZPTucYk
dg/zYO0DgnoFnamsh3kXiK0j30M8vwuJdgXyfZwf7v4ViZ2mvI66Avf2ef/O
sDsrl56dVtaiQBmxi4P6B/VzfnZQX8dzxJBHb9dwlvqeebjMzzl5dv2U97cu
PbUt1q5YeX/n/fLs+ufFPc/YxdYWm7uDKoNudF/Yk/ODLnQ/qMkFyuGHWMMX
khSzOWiq/rvqY5Axplkz8BcHXSRujDRY2WbjTdMv+BeTFNPLnEcEjdIf8mFB
Q/V7WdClzi/Nwww1Bv4uUY98uPaX6reP4xXGGGOeZzq/Mmik+MvFjlE23BzH
iMf+J/pkfpU89bguqMT1jNUG2Qzlo5WN1eZq9dc4wo/Lk413jmxC0PX6uFZ+
tLEmKBvrONpaL7L2vbUFNyWX7v8Fyjgzk5xPystxtHUh94nmX2ze2TonKmO8
wflUfV+ov4FBk6UF+p0hfqKYycqRTdfPdNdQrO7nQeXaLlLPmeZszwz6qSMY
zkJp0E3ip+sb/WAxA+Qr5X+mD+a3BM3JpeerPFd1xmbn0nM7xLFUWan8bGOW
aoePm4MWK0c/XN0wx1lBZc7LzOMy8Yuly5WV62+WewM/Ms/XUPGcySvUlRtz
sTJ88W8Av6H8Js5VN9u9oi5rtbvNWswTc6sjZ/Nq9+QO9zXTzdX2du2RjdOG
+Xj5xfq4yvl893W+/Dz9luftPWseLd2hnPO22ZzvDFqoHeNduaozt1D9DHNY
rPxOfY0Wv9D5AvkZYheJu1Mdv6uclyXya81jijnBV8SZ2Bu0J0lx7O09Qfe6
h0uD1uWtmz24zxrOdb5OHPu+TOJcLZfYnxUS9V6pzXxruMr8Viuf516tcyQO
fwPPBD0p9n7xzNcEPaBsgfMpSTrf7PorrccCddjw97LeNc12fp/E/CHrUGlN
yPt2812q/F51lcZZ5nyp9g/rr9JabHBdyB/R50ZrsynoQfWrla8St0n5KuUr
Xe9GsZu1/dr1b1RP3C1Bj1qnjerXiV+knJpslH9Qf1u12x+6x639U9ZmW9Av
ktT/Y8bYrmyb61xhPGQvJ6ldhXj8IXtCf4xPOyfeFrG71e2QsNnuup7U11Oe
jZ3WHD+7HHc7fz7oILmIezZoj7Jd4iqVP+PIGp4Tx7jPvdirv+dc3wvu5y51
+5S9KH9Q/CZHcngt6E1r/ZqYjEf/sva/DHrJOL+SR/dKHvagspedvyL+VW32
Oz+g7qAxN+rvBeevi3tF/YPaIH8DWZLWeqf4t9T9HpvQvRr025h/IP+msd4J
ejvo3aD3XOc7+mf8dd78oDz+f5Nnw/w3ntF3jQ3ufW2Rc4bBvJ+kOnx9mkv/
Jv7gGt4yl18G5qMYf2eunLkK+W3qX1XGWeVcvpSkcjCfBH0sbdcO/IEkrccn
xkb/YS71/4GyHcoP+HdFTT+Tp8Z8C2XfSru1If96oTsmqEbQ36ljjG8l6fr+
JObP7EnI3kjSkb3ao353Vockle2zRuj+Yp3+5vygI/xftXnTWH/RpmaS1rzE
PDivL2mL3T/0+Q/5t5NUv18M8i+CPs+l9uj/Ke4dab9nED9fiv8ql+reNSfW
QWz4A+7zQbFfOv9SH/8S9570hufh37mU/3XQwcQz53q/0Qdn+1v3c0oeFgxn
7hv1W8VwDr5T9p9cet44Q5/Ify3mW32vVw7mP56hj8R9Yb2+86x8r5yzcGjQ
f917LpqJ5+OQJOXZv8R8Wet72v8xl9qBYw+qJSmxBwVJWpPqSVqzr82NeNXd
d/Yf3Fd5uOryrOmwmB8ubVXGt1ulaz0q5Ed7no9wzUWOtWKsrbyWsu/1+Z15
oK+TpDLWUeh6C+WRf2vNjkzSeDW0OdJ5klTZkSO5Ngw63rGBNQFziPnW1bZA
eTVrUqgMfT0x/L3Wd14o7jhlxyqvqay6MQrNi33dbO0PFQ/f0DWTG98eZbn0
O4T8Lw/ZSH2cEtRC7ElBzZK07o2tJ3RCktacPWmkvsiaH6FtU2Od6NhUfZF7
0MT5CeKbiSlS1z6ouTJ0nDt+51437lZjn2TeLbSto/8i9wu+lXrW1lKbDH+U
OHycKuYU563EHC3uZHPJYrYWV2S+U4PaKGutvK724Nsqb+fYVuqgjHlH+SLP
AWeiU1CXoM5Bg4IuCLpQfKH6to4dHTkbJY6dxBV5Huo7r28M8v6Rsq5Jeo5P
k9i/HkHd1CGj9t2TtP7MOTvdtcdP9h0I/seeD7CNpdODzgjqqb8e2mJ3rJhe
4pqIZc7ZY36Ca+rsetur76Uvzs2ZQX0d+wSdFXS22H5BQ4POVX+ymF7i2pvD
2fLoODfnKOuX5+dc5+g4L/2d9zd+H/m+7hn5FosdIA77890HZJyhgfo+T31v
13amuZ+nvrE59tLXAGMN0AdzzksH4w+U7+u8nfz5+sx8n2/cwdoVmx/yS4Mm
BF0vHt1FYhmH5M07y48IGh50mTW4SDt0nO2LHUucg+0mnlyvDbpGOWeLc3WJ
9heb1zBzm+oIf7n44frBx1VBP9H3lUGjHa9y7O18VNAVSXp2wfZU31d9hrta
H2Plr9FulPuD/bigMc7HqBvlPPu74DydrWycMnrp9N7puxN3vLVo5B5cJz/e
+EPdl2HOx4m5TvxQ8y/RpkR+kD6v0wYfE4Mm5eHG6mOi+muMPdb9LtHPzCT9
TaD2/JtfoQ6baUHTlbNPu9QNdj8ni7tB/XRthimHnxH0U+PcoHySMWeqm6rN
dGUjtOO9gTeJlv5ugZ0dVBp0Y9CtQbcFlQXNsSY3Bc3SnnNzs/zPxM1ybKS/
m/U5Rzm4W8wPeXdjzBHL2ZmrfI54aro+6H51nLF5+igPul2f8+Tnuwby/7lx
b1M+Uvw8/S7QhvEOdYx36gObJeY61zjktlDft4udr6xMOb7vyvPLfJFYxsVB
d4tfKP4ecejuDVpqrLvFLBKDbpm4pfLLg1aIv0+bpcpWKitTvsy1LTHucv12
N3dqtUr7lcofDFotlelvrHuyXNlE932J61ys7WrxK8Q/oF/GNdrif51xS82x
TBl+12qzxnmpWPxzRm7SH+fkoaANYh8W80hejI36XKccfqvjI/rGvsI1bsrz
y3yzuu5i16jLYm3Vz8NitwQ9Kp/NK4xBzEnmsz3oyaCngh4X+5g+we9UXqEP
cttmTlu0z/BP5K2J+Q51+H7avLZp84w65Ddos0P/T4rj94C/nVvFV5gLOH63
duv72STthUIl4p7T9159Pqvfp8XtFVOhb96ZeYvnXY41TzEG7+u8H/N+vlvZ
VOtSIQ45v5GTXfdOcdlbOPa8I/P+1zSXvm/zPs27N2/bvCM2kY5VNtl14hue
N2rewxuKJ1/els9Q1sIYzcTWNzb/drUydmPjNxLX2Jjc77OeE++w7bTh3yr+
TeTfQd4su6ZXrv+/0XaSeKPN9APE0POjZ0IfkLfkDv7u806LfRexvA2cp5y3
wux9F/50+bXGQ84bEO9MvMXQCx6ij0n64R2C9zbeNXgDGJVL3yegEerxe6G+
wF2sv+y9jTe4q+XxscAYa9WfJWagOt6Z6OfzfjXePHj36u1eTTMmeU/RD7Gn
ymdvP7xh3mRO5EM/nt40PfqZ1ot3z8HyzEvFYl9uPvS7y3LpPZO3AXr5y/U3
K5feO8v0u1QZbw702nn7okdLj4s+Lb3/FfqgJ7zdvaV3Sj/6Pn1Xmusi1zvd
XFaZT/aWdqP8yjzfG/RBPHp3W9xb1rtenl4cfW3u1fQO3zcmMr4vOWf0yugf
0wt+ynUgo+9FL+jZXNpbQ79L2V7nrIc+9C/0v0lfD5nDBu2JmfWX4bMeMT1m
epL0hugL0aOlv/WCMR4xxkbtN6jbJ8/f30vasVZ80Xukb0r/hx4o/dT3lP3Q
a01SGf3f/foAR3/sdWtFnbLeKiP8R7m0J0rPCtwBfaxXTi/1A9fxofl8aJ05
T0vcS3D0ULebF301+lWcHfqiWW+V3hd14ffgU/eE3iQ9rj9r/7F69u017b4W
T0+NvgPYP8r/znXsyVX1TbFD/5n7nMk4U69aU+pN/xEbeof0y/5l7elh0tOk
lvQq306q+pufa0ePjrzBIfu7WPpn/7SW9Cp/sM+l9SDOi9q8aY2mGBss8b9y
38Ai4/+F4be4tfsMnvpyT6cnUdd6/NeakEdiTaGc+ppJVR+COxTfzyOs0/fW
iryruR7u//StahizunmSX0FeLQ6xFvSO6G3Rg8v6Tcf7byT9BPoR9Gy449MX
oHfTUr5QPvOBHWesqVh80SdqpQ19nTbyYLuKz/qGrAcZ91bup1mvp4014H5L
36K266Ofwb9tZyRVvQ36HfQ3uOtzv+TOmfUy4LmrD5JvLo486X+01/5kbZqb
dx9l5DHA/LmDc6/Pek8D1XcwRjtx5+iD2FeaD3aDzSO7317hGrnDcR8f4nyw
+Z1mzbqo66ysp/WCv8i8fvh/c9z/np6bbsbhO4/v3uGeI+6Y3PO4/w8VN9z6
Z3d7zhz3cr7DuEfxncp3MN/GfINO0DffZNm321jXw3cbdzTuddz/xhmHdfNt
RJ7TJO6hfDfxbT7LPLkncFe5xzxmmDc00/z5nuY7M/veLHWdo42NHXcL7hjc
ucrF3WKe81zXSPV8r3Jvm639PLHIsrsfsuzuV25+3LXu0tdc45P74jzdHfrI
7nXw/Dv2jb/vYJeZK3/b3/nbm91/Vlh37jmrlXG34V7DXYFvfO4I94ulftxD
HlDGnWON/CZ59Ev1QezN+sqwG4yxwdqu1Xd2j9ymzSb3m296vtW5E3A3mKSM
+0J2X9meVN0ltmj/RFJ1rwLLdz33hZ3q2FPO1B7jbFH/qLKnjcO3+46k6g4z
2TzQP6ff/wHhHjsQ
"]]],
Lighting->Automatic]}, {}, {}, {}, {}}],
{RGBColor[1, 0, 0], PointSize[0.01],
Point3DBox[{0., 5.000000000000003, 0.9139751432480251}]}},
DisplayFunction->Identity,
FaceGridsStyle->Automatic,
ImageSize->{613.4861882927261, 287.00020489556096`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]]},
PlotRange->{All, All, All},
PlotRangePadding->{Automatic, Automatic, Automatic},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{2.012865678696764, -2.562270295313092, 0.9127665053455774},
ViewVertical->{0.3994936788142861, -0.32266885345992136`,
4.664607308815435}]], "Output",
CellChangeTimes->{
3.7585783581684504`*^9, 3.7585787893588333`*^9, {3.758578979010934*^9,
3.7585789875059357`*^9}, 3.75858031701678*^9, {3.7585804340138493`*^9,
3.758580463799818*^9}, 3.758580748979505*^9, 3.758581019893553*^9},
CellLabel->
"Out[190]=",ExpressionUUID->"5a50d6ae-7f10-49da-bdc5-258ae02f9f84"]
}, Open ]],
Cell[BoxData["\[IndentingNewLine]"], "Input",
CellChangeTimes->{
3.758581107277989*^9},ExpressionUUID->"a63828ee-ac81-4e65-9570-\
a5a195618271"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Fg", " ", "=", " ",
RowBox[{"boatmass", "*", "9.8", "*",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{"-", "1"}]}], "}"}]}]}], "\[IndentingNewLine]",
RowBox[{"Fb", " ", "=", " ",
RowBox[{"-", "Fg"}]}], "\[IndentingNewLine]",
RowBox[{"V", " ", "=", " ",
RowBox[{"boatmass", "/", "waterdensity", " "}]}]}], "Input",
CellChangeTimes->{{3.758581112982376*^9, 3.7585812169338503`*^9}, {
3.758581392553294*^9, 3.758581459077157*^9}},
CellLabel->
"In[196]:=",ExpressionUUID->"1321506e-ef2e-47a1-8b57-cedfd313490e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.`", ",", "0.`", ",",
RowBox[{"-", "225399.99356249257`"}]}], "}"}]], "Output",
CellChangeTimes->{{3.758581171820636*^9, 3.7585812176816463`*^9},
3.758581460350758*^9},
CellLabel->
"Out[196]=",ExpressionUUID->"2c7fbefe-9ee1-4eac-9181-06098ee1be46"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.`", ",", "0.`", ",", "225399.99356249257`"}], "}"}]], "Output",
CellChangeTimes->{{3.758581171820636*^9, 3.7585812176816463`*^9},
3.758581460357164*^9},
CellLabel->
"Out[197]=",ExpressionUUID->"1af91b47-5b34-4fa8-b493-4b3b30107d48"],
Cell[BoxData["22.999999343111487`"], "Output",
CellChangeTimes->{{3.758581171820636*^9, 3.7585812176816463`*^9},
3.758581460362303*^9},
CellLabel->
"Out[198]=",ExpressionUUID->"acf7eb0f-cdaa-4faa-b0ae-77b9b863418e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"RegionPlot3D", "[",
RowBox[{
RowBox[{"ImplicitRegion", "[",
RowBox[{"True", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", " ", "0", ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"z", ",", " ", "hullcurve", ",", " ", "wl"}], "}"}]}],
"}"}]}], "]"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"wl", ",", ".1", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7585816845262136`*^9, 3.758581723338521*^9}, {
3.7585817944664*^9, 3.758581810675952*^9}, {3.758581847898785*^9,
3.7585818674958687`*^9}, {3.758581903694932*^9, 3.7585819038860188`*^9}, {
3.758581941615344*^9, 3.758581966272592*^9}, {3.758582049159306*^9,
3.758582086102953*^9}},
CellLabel->
"In[206]:=",ExpressionUUID->"88a38d4d-962b-4547-a85a-36e83288920d"],