-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process.py
115 lines (94 loc) · 4.44 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import pandas as pd
import os
from data_process_func import *
univ_region_file_directory = r"Univ_region.xlsx"
topic_qlist_directory = r"cate_qlist.xlsx"
qlist_qcontent_directory = r"2023_BTS_Survey_Questions_N_Number.xlsx"
univ_region_df = pd.read_excel(univ_region_file_directory )
topic_qlist_df = pd.read_excel(topic_qlist_directory)
qlist_qcontent_df = pd.read_excel(qlist_qcontent_directory,header = None)
univ_reg_dict = df_to_dict_univ_region(univ_region_df)
lea_univ_dict = get_univreg_by_school_dict(univ_region_df)
topic_qlist_dict = df_to_dict_topic_qlist(topic_qlist_df)
tsz1,tsz2 = topic_qlist_df.shape
qlist_qcontent_dict = df_to_dict_qlist(qlist_qcontent_df)
univ_reg_display = display_dict(univ_reg_dict)
qlist_qcontent_display = display_dict(qlist_qcontent_dict)
lea_display = {}
topic_display ={}
for i in range(tsz1):
topic_display[topic_qlist_df.iloc[i,0]]=topic_qlist_df.iloc[i,0]
lea_v_count = univ_region_df["LEA"].value_counts().to_dict()
for k,_ in lea_v_count.items():
lea_display[k] = k
#inverse dict
qlist_qcontent_inverse_dict_sp = {}
qlist_qcontent_inverse_dict_prn = {}
qlist_qcontent_inverse_dict_edu = {}
qlist_qcontent_inverse_dict_sp['educator']= qlist_qcontent_inverse_dict_edu
qlist_qcontent_inverse_dict_sp['principal']=qlist_qcontent_inverse_dict_prn
qsz1,qsz2 = qlist_qcontent_df.shape
"""
for i in range(qsz1):
# need to seperate into 2 dict to avoid duplicate
qlist_qcontent_inverse_dict[qlist_qcontent_df.iloc[i,1]]= qlist_qcontent_df.iloc[i,0]
"""
for i in range(44):
qlist_qcontent_inverse_dict_prn[qlist_qcontent_df.iloc[i,1]]=qlist_qcontent_df.iloc[i,0]
for i in range(44,90):
qlist_qcontent_inverse_dict_edu[qlist_qcontent_df.iloc[i,1]]=qlist_qcontent_df.iloc[i,0]
for i in range(323,330):
qlist_qcontent_inverse_dict_edu[qlist_qcontent_df.iloc[i,1]]=qlist_qcontent_df.iloc[i,0]
edu_result_directory = r"educator_raw.xlsx"
prn_result_directory = r"principal_raw.xlsx"
edu_df = pd.read_excel(edu_result_directory)
prn_df = pd.read_excel(prn_result_directory)
def get_v_counts(role,univ_region,lea,qs,qlist_qcontent_inverse_dict_edu,qlist_qcontent_inverse_dict_prn,edu_df,prn_df,p_or_a):
if(role=="educator"):
df_curr = edu_df.copy()
reg_locator = "Q43"
qlist_qcontent_inverse_dict = qlist_qcontent_inverse_dict_edu
elif(role=="principal"):
df_curr = prn_df.copy()
reg_locator = "Q7"
qlist_qcontent_inverse_dict = qlist_qcontent_inverse_dict_prn
if p_or_a == "p":
try:
df_region = df_curr[df_curr[reg_locator]==lea]
df_region_qs = df_region[qlist_qcontent_inverse_dict[qs]]
except:
display_text = "No result found in "+str(input.lea_region())+" LEA/district"
sz1,sz2 = df_region.shape
if (sz1 >=10):
display_text = "There is the statewise result"
#lea_or_univ =0
total_size = sz1
elif (sz1<= 10):
try:
lea_set = univ_reg_dict[univ_region]
except:
pass
df_region = df_curr[df_curr[reg_locator].isin(lea_set)]
df_region_qs = df_region[qlist_qcontent_inverse_dict[qs]]
display_text = "Due to the privacy, the result of that LEA region will be hidden, instead, results of the University Region will be displayed"
sz1,sz2 = df_region.shape
#lea_or_univ = 1
total_size = sz1
elif sz1 ==0:
display_text = "No result found in "+str(input.lea_region())+" LEA/district"
v_count_df = pd.DataFrame(df_region_qs.value_counts(sort=True)).reset_index()
sz1,sz2 = v_count_df.shape
if sz1 ==1 and v_count_df.iloc[0,1]==0:
display_text = "No result found in "+str(input.lea_region())+" LEA/district"
if sz1 == 0 :
display_text = "No result found in "+str(input.lea_region())+" LEA/district"
elif p_or_a =="a":
print("The question is: "+ str(qs))
df_all = pd.DataFrame(df_curr[qlist_qcontent_inverse_dict[qs]])
v_count_df = pd.DataFrame(df_all.value_counts(sort=True)).reset_index()
#new_title = ["Answers","Question code: "+str(qlist_qcontent_inverse_dict[qs])]
new_title = ["Answers",str(qlist_qcontent_inverse_dict[qs])]
v_count_df.columns = new_title
total_size,sz2 = df_all.shape
display_text ="Result from all responses in Utah."
return v_count_df,display_text,total_size