diff --git a/README.md b/README.md index 265fe1a..03b4862 100644 --- a/README.md +++ b/README.md @@ -9,15 +9,16 @@ Label distribution learning (LDL) and label enhancement (LE) toolkit implemented + ([Yang, Sun, and Sun 2017](https://doi.org/10.1609/aaai.v31i1.10485)) [*AAAI*]: `BCPNN` and `ACPNN`. + ([Xu and Zhou 2017](https://doi.org/10.24963/ijcai.2017/443)) [*IJCAI*]: `IncomLDL`$^2$. + ([Shen et al. 2017](https://papers.nips.cc/paper_files/paper/2017/hash/6e2713a6efee97bacb63e52c54f0ada0-Abstract.html)) [*NeurIPS*]: `LDLF`. - + ([Wang and Geng 2019](https://doi.org/10.24963/ijcai.2019/515)) [*IJCAI*]: `LDL4C`$^3$. + + ([Jia et al. 2018](https://doi.org/10.1609/aaai.v32i1.11664)) [*AAAI*]: $^\dagger$`LDLLC`. + + ([Wang and Geng 2019](https://doi.org/10.24963/ijcai.2019/515)) [*IJCAI*]: $^\dagger$`LDL4C`$^3$. + ([Shen et al. 2020](https://dx.doi.org/10.14177/j.cnki.32-1397n.2020.44.06.004)) [*南京理工大学学报* (Chinese)]: `AdaBoostLDL`. + ([González et al. 2021a](https://doi.org/10.1016/j.ins.2020.07.071)) [*Inf. Sci.*]: `SSG_LDL`$^4$. + ([González et al. 2021b](https://doi.org/10.1016/j.inffus.2020.08.024)) [*Inf. Fusion*]: `DF_LDL`. - + ([Wang and Geng 2021a](https://doi.org/10.24963/ijcai.2021/426)) [*IJCAI*]: `LDL_HR`$^3$. - + ([Wang and Geng 2021b](https://proceedings.mlr.press/v139/wang21h.html)) [*ICML*]: `LDLM`$^3$. + + ([Wang and Geng 2021a](https://doi.org/10.24963/ijcai.2021/426)) [*IJCAI*]: $^\dagger$`LDL_HR`$^3$. + + ([Wang and Geng 2021b](https://proceedings.mlr.press/v139/wang21h.html)) [*ICML*]: $^\dagger$`LDLM`$^3$. + ([Jia et al. 2021](https://doi.org/10.1109/TKDE.2019.2943337)) [*TKDE*]: `LDL_SCL`. - + ([Jia et al. 2023a](https://doi.org/10.1109/TKDE.2021.3099294)) [*TKDE*]: `LDL_LRR`. - + ([Jia et al. 2023b](https://doi.org/10.1109/TNNLS.2023.3258976)) [*TNNLS*]: `LDL_DPA`. + + ([Jia et al. 2023a](https://doi.org/10.1109/TKDE.2021.3099294)) [*TKDE*]: $^\dagger$`LDL_LRR`. + + ([Jia et al. 2023b](https://doi.org/10.1109/TNNLS.2023.3258976)) [*TNNLS*]: $^\dagger$`LDL_DPA`. + ([Wen et al. 2023](https://doi.org/10.1109/ICCV51070.2023.02146)) [*ICCV*]: `CAD`$^1$, `QFD2`$^1$, and `CJS`$^1$. + ([Li and Chen 2024](https://doi.org/10.24963/ijcai.2024/494)) [*IJCAI*]: `WInLDL`$^2$. + ([Wu, Li, and Jia 2024](https://doi.org/10.1109/TBDATA.2024.3442562)) [*TBD*]: `LDL_DA`$^5$. @@ -28,7 +29,7 @@ Label distribution learning (LDL) and label enhancement (LE) toolkit implemented + LDL metrics: `chebyshev`, `clark`, `canberra`, `kl_divergence`, `cosine`, `intersection`, etc. + Structured LDL datasets: *Human_Gene*, *Movie*, *Natural_Scene*, *s-BU_3DFE*, *s-JAFFE*, *Yeast*, etc. + LDL applications: - + Facial emotion recognition (supported datasets: [*JAFFE*](https://zenodo.org/records/3451524) and [*BU-3DFE*](https://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html)) + + Facial emotion recognition (supported datasets: [*JAFFE*](https://zenodo.org/records/3451524) and [*BU-3DFE*](https://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html)). + ([Shirani et al. 2019](https://doi.org/10.18653/v1/P19-1112)) [*ACL*]: Emphasis selection (supported datasets: [*SemEval2020*](https://github.com/RiTUAL-UH/SemEval2020_Task10_Emphasis_Selection); pre-trained GloVe embeddings can be downloaded [here](https://nlp.stanford.edu/projects/glove/)). + ([Wu et al. 2019](https://doi.org/10.1109/ICCV.2019.01074)) [*ICCV*]: Lesion counting (supported datasets: [*ACNE04*](https://drive.google.com/drive/folders/18yJcHXhzOv7H89t-Lda6phheAicLqMuZ)). + ([Chen et al. 2020](https://doi.org/10.1109/CVPR42600.2020.01400)) [*CVPR*]: Facial emotion recognition with auxiliary label space graphs (supported datasets: [*CK+*](https://www.jeffcohn.net/Resources/); OpenFace can be downloaded [here](https://github.com/TadasBaltrusaitis/OpenFace/releases), and the required models can be downloaded [here](https://github.com/TadasBaltrusaitis/OpenFace/wiki/Model-download)). @@ -41,7 +42,9 @@ Label distribution learning (LDL) and label enhancement (LE) toolkit implemented > > $^4$ These are oversampling algorithms for LDL, therefore you should use `fit_transform` to generate synthetic samples. > -> $^5$: To use domain adaptation methods for LDL, you need to provide the source domain data via parameters `sX` and `sy` of the `fit` method. [Here](https://github.com/SpriteMisaka/PyLDL/blob/main/demo/domain_adaptation.ipynb) is a demo on domain adaptation for LDL. +> $^5$ To use domain adaptation methods for LDL, you need to provide the source domain data via parameters `sX` and `sy` of the `fit` method. [Here](https://github.com/SpriteMisaka/PyLDL/blob/main/demo/domain_adaptation.ipynb) is a demo on domain adaptation for LDL. + +> $^\dagger$ These methods involve imposing constraints on model parameters, like regularization. Therefore, it is recommended to carefully tune the hyperparameters and apply feature preprocessing techniques like `StandardScaler` or `MinMaxScaler` before conducting experiments to achieve the expected performance. ## Installation diff --git a/docs/genindex.html b/docs/genindex.html index 2e7024a..faf26e5 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -98,6 +98,8 @@