-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyzer.py
451 lines (364 loc) · 20.1 KB
/
analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import os, torch, sys
from utils.system_utils import setup_directories, save_codebase_of_run
from utils.model_utils import calculate_accuracy
from torch.utils.data import DataLoader
from utils.constants import *
import pickle
from sklearn import metrics
from sklearn.utils.multiclass import unique_labels
import matplotlib.pyplot as plt
from typing import List
from plots import *
import numpy as np
from torch import nn
import seaborn as sns
from collections import defaultdict
from statsmodels.stats.contingency_tables import mcnemar
# from mlxtend.evaluate import permutation_test
class Analyzer:
# input: both network models
# return average loss, acc; etc.
def __init__(self,
model, num_classes,
model_state_path='',
device='cpu'):
self.model = model # be combined classifiers!!!
self.model_state_path = model_state_path # todo hmmm
self.device = device
self.num_classes = num_classes
self.model.eval()
def soft_voting(self, probs1, probs2):
print(probs1)
return (probs1 + probs2) / 2
def calculate_metrics(
self,
targets: List,
predictions: List,
average: str = "weighted"):
if sum(predictions) == 0:
return 0, 0, 0
precision = metrics.precision_score(
targets, predictions, average=average)
recall = metrics.recall_score(targets, predictions, average=average)
f1 = metrics.f1_score(targets, predictions, average=average)
return f1, precision, recall
def create_contingency_table(self, targets, predictions1, predictions2):
assert len(targets) == len(predictions1)
assert len(targets) == len(predictions2)
contingency_table = np.zeros((2, 2))
targets_length = len(targets)
contingency_table[0, 0] = sum([targets[i] == predictions1[i] and targets[i] == predictions2[i] for i in range(targets_length)]) # both predictions are correct
contingency_table[0, 1] = sum([targets[i] == predictions1[i] and targets[i] != predictions2[i] for i in range(targets_length)]) # predictions1 is correct and predictions2 is wrong
contingency_table[1, 0] = sum([targets[i] != predictions1[i] and targets[i] == predictions2[i] for i in range(targets_length)]) # predictions1 is wrong and predictions2 is correct
contingency_table[1, 1] = sum([targets[i] != predictions1[i] and targets[i] != predictions2[i] for i in range(targets_length)]) # both predictions are wrong
return contingency_table
def calculate_mcnemars_test(self, targets, predictions1, predictions2):
contingency_table = self.create_contingency_table(
targets,
predictions1,
predictions2)
result = mcnemar(contingency_table, exact=True)
return result.pvalue
def calculate_confusion_matrix(
self,
targets,
predictions,
classes,
analysis_folder,
normalize=False,
plot_matrix=True,
title=None):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
# Compute confusion matrix
cm = metrics.confusion_matrix(targets, predictions)
# Only use the labels that appear in the data
labels = unique_labels(targets, predictions)
classes = classes[labels]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
ax = None
# if plot_matrix:
# ax = self.plot_confusion_matrix(cm, classes, analysis_folder, normalize, title)
return cm, ax
def plot_confusion_matrix(
self,
cm,
classes,
analysis_folder,
normalize=False,
title=None,
print_scores=True,
clim=None,
plot_colorbar=True,
cmap=plt.cm.Blues):
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='none', cmap=cmap)
if clim:
im.set_clim(clim[0], clim[1])
if plot_colorbar:
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
# title=title,
ylabel='True label',
xlabel='Predicted label')
ax.set_ylim(4.5, -0.5) # fix the classes
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
if print_scores:
fmt = '.3f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
fig.savefig(os.path.join(analysis_folder, f'confusion_matrix_{title}'))
return ax
def compute_confusion_matrix(
self,
targets,
combined_predictions,
classifier_predictions,
analysis_folder):
classes=np.array(['Pop', 'Hip-Hop', 'Rock', 'Metal', 'Country'])
combined_cm, _ = self.calculate_confusion_matrix(targets, combined_predictions, classes, analysis_folder, normalize=True, title='Combined')
lstm_cm, _ = self.calculate_confusion_matrix(targets, classifier_predictions, classes, analysis_folder, normalize=True, title='LSTM')
max_cm = np.max([np.max(combined_cm), np.max(lstm_cm)])
self.plot_confusion_matrix(
combined_cm,
classes,
analysis_folder,
normalize=True,
title='Combined',
cmap=plt.cm.Blues,
clim=[0, max_cm],
print_scores=True)
self.plot_confusion_matrix(
lstm_cm,
classes,
analysis_folder,
normalize=True,
title='LSTM',
cmap=plt.cm.Blues,
clim=[0, max_cm],
print_scores=True)
diff_cm = combined_cm - lstm_cm
ones = np.ones(diff_cm.shape, dtype=np.int32) * (-1)
ones += np.eye(diff_cm.shape[0], dtype=np.int32) * 2
diff_cm = ones * diff_cm
self.plot_confusion_matrix(
diff_cm,
classes,
analysis_folder,
normalize=False,
title='Difference',
cmap=plt.cm.RdYlGn,
clim=[-np.max(diff_cm), np.max(diff_cm)],
plot_colorbar=False,
print_scores=False)
sns.set()
plt.show()
def compute_significance(self, targets, combined_predictions, classifier_predictions):
mcnemars_p_value = self.calculate_mcnemars_test(targets, classifier_predictions, combined_predictions)
alpha_value = 0.05
mcnemars_significant = mcnemars_p_value < alpha_value
print(f'Mcnemars: {mcnemars_significant} | p-value: {mcnemars_p_value}')
def compute_f1(self, targets, combined_predictions, classifier_predictions, vaes_predictions):
combined_f1, combined_precision, combined_recall = self.calculate_metrics(targets, combined_predictions)
classifier_f1, classifier_precision, classifier_recall = self.calculate_metrics(targets, classifier_predictions)
vae_f1, vae_precision, vae_recall = self.calculate_metrics(targets, vaes_predictions)
print(f'Combined F1: {combined_f1}\nLSTM F1: {classifier_f1}\nVAE F1: {vae_f1}')
def ensure_analyzer_filesystem(self):
analysis_folder = os.path.join('local_data', 'analysis')
if not os.path.exists(analysis_folder):
os.mkdir(analysis_folder)
return analysis_folder
def analyze_misclassifications(self, test_logs):
if test_logs is not None:
with open('test_logs.pickle', 'wb') as handle:
pickle.dump(test_logs, handle, protocol=pickle.HIGHEST_PROTOCOL)
else:
with open('test_logs.pickle', 'rb') as handle:
test_logs = pickle.load(handle)
analysis_folder = self.ensure_analyzer_filesystem()
combined_scores = torch.stack(test_logs['final_scores']).view(-1, 5)
classifier_scores = torch.stack(test_logs['combination']['classifier_scores']).view(-1, 5)
vaes_scores = torch.stack(test_logs['combination']['vaes_scores']).view(-1, 5)
targets = torch.stack(test_logs['true_targets']).view(-1).to(self.device)
song_lengths = torch.stack(test_logs['length_lstm']).view(-1).to(self.device)
_, combined_predictions = combined_scores.max(dim=-1)
_, classifier_predictions = classifier_scores.max(dim=-1)
_, vaes_predictions = vaes_scores.max(dim=-1)
classifier_compare = classifier_predictions.eq(targets)
combined_compare = combined_predictions.eq(targets)
vaes_compare = vaes_predictions.eq(targets)
print('Accuracies:'
'\n-Combined:', combined_compare.float().mean().item(),
'\n-Base Classifier:', classifier_compare.float().mean().item(),
'\n-Classify By Elbo:', vaes_compare.float().mean().item())
self.uncertainty_analysis(vaes_scores, classifier_scores, targets, combined_scores)
'''
F1 score
'''
target_tensor = targets
targets = targets.detach().tolist()
combined_predictions = combined_predictions.tolist()
classifier_predictions = classifier_predictions.tolist()
vaes_predictions = vaes_predictions.tolist()
print("----------------------------------------------")
self.compute_f1(targets, combined_predictions, classifier_predictions, vaes_predictions)
print("----------------------------------------------")
self.compute_significance(targets, combined_predictions, classifier_predictions)
print("----------------------------------------------")
self.compute_confusion_matrix(targets, combined_predictions, classifier_predictions, analysis_folder)
# check if combination correctly classified these? check how many
# print(combined_compare[classifier_misfire_indices])
# print(classifier_misfire_indices)
# PLOT
classifier_misfire_indices = (classifier_compare == 0).nonzero() # get misclassifications
combined_misfire_indices = (combined_compare == 0).nonzero() # get misclassifications
vaes_misfire_indices = (vaes_compare == 0).nonzero() # get misclassifications
len_of_dataset = len(classifier_compare.tolist())
# Compare LSTM with VAE
vae_right_class_wrong = vaes_compare[classifier_misfire_indices].tolist().count([1]) / len_of_dataset
vae_wrong_class_wrong = classifier_compare[vaes_misfire_indices].tolist().count([0]) / len_of_dataset
vae_wrong_class_right = classifier_compare[vaes_misfire_indices].tolist().count([1]) / len_of_dataset
# Compare LSTM with Combined
comb_right_class_wrong = combined_compare[classifier_misfire_indices].tolist().count([1]) / len_of_dataset
comb_wrong_class_wrong = classifier_compare[combined_misfire_indices].tolist().count([0]) / len_of_dataset
comb_wrong_class_right = classifier_compare[combined_misfire_indices].tolist().count([1]) / len_of_dataset
lstm_classifier = classifier_compare.tolist().count(1) / len_of_dataset
save_percentage_plot([lstm_classifier, 1 - lstm_classifier, 0, 0],
[1 - vae_wrong_class_wrong - vae_wrong_class_right -
vae_right_class_wrong, vae_wrong_class_right,
vae_right_class_wrong, vae_wrong_class_wrong],
[1 - comb_wrong_class_wrong - comb_wrong_class_right -
comb_right_class_wrong, comb_wrong_class_right,
comb_right_class_wrong, comb_wrong_class_wrong],
'percentage_plot')
# PLOT 2
classifier_y = defaultdict(lambda: np.zeros(0))
vae_y = defaultdict(lambda: np.zeros(0))
combined_y = defaultdict(lambda: np.zeros(0))
ordered_song_lengths_list = song_lengths.tolist()
ordered_song_lengths_list.sort()
# Cuz 12998/194=67 #quickmaths
chunks = [ordered_song_lengths_list[i:i + 67] for i in range(0, len(ordered_song_lengths_list), 67)]
for chunk in chunks:
y_class, y_vae, y_comb = [],[],[]
for song_length in list(set(chunk)):
class_indexes = (song_lengths == song_length).nonzero()
y_class.append((classifier_compare[class_indexes].tolist().count([1]) / len(classifier_compare[class_indexes].tolist())))
y_vae.append(vaes_compare[class_indexes].tolist().count([1]) / len(vaes_compare[class_indexes].tolist()))
y_comb.append(combined_compare[class_indexes].tolist().count([1]) / len(combined_compare[class_indexes].tolist()))
classifier_y[np.mean(chunk)] = np.mean(y_class)
vae_y[np.mean(chunk)] = np.mean(y_vae)
combined_y[np.mean(chunk)] = np.mean(y_comb)
save_lineplot_guan(classifier_y,vae_y,combined_y,'lineplot1')
# PLOT 3
plot_per_genre_data = []
for label in [0,1,2,3,4]:
plot_per_genre_data.append([])
classifier_y = defaultdict(lambda: np.zeros(0))
vae_y = defaultdict(lambda: np.zeros(0))
combined_y = defaultdict(lambda: np.zeros(0))
label_index = (target_tensor == label).nonzero()
ordered_song_lengths_list = song_lengths[label_index].tolist()
ordered_song_lengths_list = [item for sublist in ordered_song_lengths_list for item in sublist]
chunks = [ordered_song_lengths_list[i:i + 67] for i in range(0, len(ordered_song_lengths_list), 67)]
for chunk in chunks:
y_class, y_vae, y_comb = [], [], []
for song_length in list(set(chunk)):
class_indexes = (song_lengths == song_length).nonzero()
y_class.append((classifier_compare[class_indexes].tolist().count([1]) / len(
classifier_compare[class_indexes].tolist())))
y_vae.append(
vaes_compare[class_indexes].tolist().count([1]) / len(vaes_compare[class_indexes].tolist()))
y_comb.append(combined_compare[class_indexes].tolist().count([1]) / len(
combined_compare[class_indexes].tolist()))
classifier_y[np.mean(chunk)] = np.mean(y_class)
vae_y[np.mean(chunk)] = np.mean(y_vae)
combined_y[np.mean(chunk)] = np.mean(y_comb)
plot_per_genre_data[label].append([classifier_y,vae_y,combined_y])
save_lineplot_per_genre(plot_per_genre_data)
def uncertainty_analysis(self, vaes_scores, classifier_scores, targets, combined_scores):
_, combined_predictions = combined_scores.max(dim=-1)
_, classifier_predictions = classifier_scores.max(dim=-1)
_, vaes_predictions = vaes_scores.max(dim=-1)
classifier_compare = classifier_predictions.eq(targets)
combined_compare = combined_predictions.eq(targets)
vaes_compare = vaes_predictions.eq(targets)
'''
uncertainty analyses
'''
vaes_scores_softmax = nn.Softmax(dim=-1)(vaes_scores)
classifier_predictions_indices, _ = classifier_scores.max(dim=-1)
classifier_prediction_values = classifier_scores[np.arange(0, len(classifier_scores)),
classifier_predictions_indices.long()]
classifier_uncertain_indices = ((classifier_prediction_values <= 0.30).eq(
classifier_prediction_values >= 0.00)).nonzero()
# vae_scores_for_uncertain = vaes_scores[classifier_uncertain_indices]
vae_scores_for_uncertain, pred_vae = vaes_scores_softmax[classifier_uncertain_indices.long()].max(dim=-1)
classifier_uncertain_scores, pred_class = classifier_scores[classifier_uncertain_indices.long()].max(dim=-1)
true = targets[classifier_uncertain_indices.long()]
print('LSTM is uncertain in', len(classifier_uncertain_indices)/len(classifier_scores), 'samples.')
classifier_uncertain_indices_correct = classifier_compare[classifier_uncertain_indices].nonzero()
classifier_uncertain_indices_false = (classifier_compare[classifier_uncertain_indices]==0).nonzero()
print('-', len(classifier_uncertain_indices_false)/len(classifier_uncertain_indices), 'of these are misclassifications.')
classifier_uncertain_correct_VAE = vaes_compare[classifier_uncertain_indices_correct[:,0]]
classifier_uncertain_false_VAE = vaes_compare[classifier_uncertain_indices_false[:,0]]
print('- -', classifier_uncertain_correct_VAE.float().mean().item(), 'of the CORRECT uncertain classifications are correctly classified by the VAE.')
print('- -', classifier_uncertain_false_VAE.float().mean().item(), 'of the uncertain MISclassifications are correctly classified by the VAE.')
classifier_uncertain_correct_Combined = combined_compare[classifier_uncertain_indices_correct[:,0]]
classifier_uncertain_false_Combined = combined_compare[classifier_uncertain_indices_false[:,0]]
print('- - -', classifier_uncertain_correct_Combined.float().mean().item(),
'of the CORRECT uncertain classifications are correctly classified by the Combined Model.')
print('- - -', classifier_uncertain_false_Combined.float().mean().item(),
'of the uncertain MISclassifications are correctly classified by the Combined Model.')
# ###################
# combine_predictions_indices, _ = combined_scores.max(dim=-1)
# combine_prediction_values = combine_scores[np.arange(0, len(combined_scores)),
# combine_predictions_indices.long()]
#
# combine_uncertain_indices = ((combine_prediction_values <= 0.25).eq(
# combine_prediction_values >= 0.00)).nonzero()
#
# print(len(combine_uncertain_indices)/len(combine_predictions_indices))
#
# classifier_uncertain_indices_correct = classifier_uncertain_indices_false
# vae_predictions_indices, _ = vaes_scores_softmax.max(dim=-1)
# vae_prediction_values = vaes_scores_softmax[np.arange(0, len(classifier_scores)),
# classifier_predictions_indices.long()]
# classifier_uncertain_vae_scores = vae_prediction_values[classifier_uncertain_indices_correct[:,0]]
#
# classifier_uncertain_vae_uncertain_indices = ((classifier_uncertain_vae_scores <= 0.25).eq(
# classifier_uncertain_vae_scores >= 0.00)).nonzero()
#
# print('- - - -', len(classifier_uncertain_vae_uncertain_indices) / len(classifier_uncertain_vae_scores))
#
# ####################
#
# combined_predictions_indices, _ = combined_scores.max(dim=-1)
# combined_prediction_values = combined_scores[np.arange(0, len(combined_scores)),
# combined_predictions_indices.long()]
# classifier_uncertain_combined_scores = combined_prediction_values[classifier_uncertain_indices_correct[:,0]]
#
# classifier_uncertain_combined_uncertain_indices = ((classifier_uncertain_combined_scores <= 0.25).eq(
# classifier_uncertain_combined_scores >= 0.00)).nonzero()
#
# print('- - - -', len(classifier_uncertain_combined_uncertain_indices) / len(classifier_uncertain_combined_scores))
# print('cla', classifier_uncertain_scores.tolist())
# print('vae', vae_scores_for_uncertain.tolist())
# print('cla', pred_class.tolist())
# print('vae', pred_vae.tolist())
# print('tru', true.tolist())