-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathallennlp.diff
58 lines (55 loc) · 3.13 KB
/
allennlp.diff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
diff --git a/allennlp/modules/text_field_embedders/basic_text_field_embedder.py b/allennlp/modules/text_field_embedders/basic_text_field_embedder.py
index 477dd8f1..7d2a28ac 100644
--- a/allennlp/modules/text_field_embedders/basic_text_field_embedder.py
+++ b/allennlp/modules/text_field_embedders/basic_text_field_embedder.py
@@ -85,7 +85,7 @@ class BasicTextFieldEmbedder(TextFieldEmbedder):
missing_tensor_args = set()
for param in forward_params.keys():
if param in kwargs:
- forward_params_values[param] = kwargs[param]
+ forward_params_values[param] = kwargs.pop(param)
else:
missing_tensor_args.add(param)
@@ -96,11 +96,11 @@ class BasicTextFieldEmbedder(TextFieldEmbedder):
if len(tensors) == 1 and len(missing_tensor_args) == 1:
# If there's only one tensor argument to the embedder, and we just have one tensor to
# embed, we can just pass in that tensor, without requiring a name match.
- token_vectors = embedder(list(tensors.values())[0], **forward_params_values)
+ token_vectors = embedder(list(tensors.values())[0], **forward_params_values, **kwargs)
else:
# If there are multiple tensor arguments, we have to require matching names from the
# TokenIndexer. I don't think there's an easy way around that.
- token_vectors = embedder(**tensors, **forward_params_values)
+ token_vectors = embedder(**tensors, **forward_params_values, **kwargs)
if token_vectors is not None:
# To handle some very rare use cases, we allow the return value of the embedder to
# be None; we just skip it in that case.
diff --git a/allennlp/modules/token_embedders/pretrained_transformer_embedder.py b/allennlp/modules/token_embedders/pretrained_transformer_embedder.py
index 9903c310..1b22ba76 100644
--- a/allennlp/modules/token_embedders/pretrained_transformer_embedder.py
+++ b/allennlp/modules/token_embedders/pretrained_transformer_embedder.py
@@ -1,5 +1,6 @@
import logging
import math
+import inspect
from typing import Optional, Tuple, Dict, Any
from overrides import overrides
@@ -144,6 +145,7 @@ class PretrainedTransformerEmbedder(TokenEmbedder):
mask: torch.BoolTensor,
type_ids: Optional[torch.LongTensor] = None,
segment_concat_mask: Optional[torch.BoolTensor] = None,
+ **kwargs
) -> torch.Tensor: # type: ignore
"""
# Parameters
@@ -198,6 +200,11 @@ class PretrainedTransformerEmbedder(TokenEmbedder):
if type_ids is not None:
parameters["token_type_ids"] = type_ids
+ forward_params = inspect.signature(self.transformer_model.forward).parameters
+ for param in list(kwargs.keys()):
+ if param in forward_params:
+ parameters[param] = kwargs.pop(param)
+
transformer_output = self.transformer_model(**parameters)
if self._scalar_mix is not None:
# As far as I can tell, the hidden states will always be the last element