forked from PeaSnuter/VRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStruct2Vec.py
132 lines (110 loc) · 4.9 KB
/
Struct2Vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
class struct2vec_model(nn.Module):
def __init__(self, p_dim):
super(struct2vec_model, self).__init__()
self.theta1_linear = nn.Linear(p_dim, p_dim, bias=False)
self.theta2_linear = nn.Linear(p_dim, p_dim, bias=False)
self.theta3_linear = nn.Linear(1, p_dim, bias=False)
self.theta4_linear = nn.Linear(p_dim, p_dim, bias=False)
self.theta5_linear = nn.Linear(1, p_dim, bias=False)
self.theta6_linear = nn.Linear(p_dim, p_dim, bias=False)
self.theta7_linear = nn.Linear(1, p_dim, bias=False)
self.theta8_Start_linear = nn.Linear(4, p_dim, bias=False)
self.theta8_Pick_linear = nn.Linear(7, p_dim, bias=False)
self.theta8_Delivery_linear = nn.Linear(2, p_dim, bias=False)
self.theta8_Depot_linear = nn.Linear(1, p_dim, bias=False)
self.theta8_Destination_linear = nn.Linear(1, p_dim, bias=False)
def forward(self, name, xi, mu_N, wi, ui, ti):
# xi:(xi_dim); mu_N:(|N(i)|, p_dim); wi:(|N(i)|, 1); ui:(|N(i)|, 1); ti:(|N(i)|, 1)
tmp = self.theta1_linear(torch.sum(mu_N, 0)) + self.theta2_linear(
torch.sum(torch.relu(self.theta3_linear(wi)), 0)) \
+ self.theta4_linear(torch.sum(torch.relu(self.theta5_linear(ui)), 0)) \
+ self.theta6_linear(torch.sum(torch.relu(self.theta7_linear(ti)), 0))
if name == "Start":
mu = torch.relu(tmp + self.theta8_Start_linear(xi))
elif name == "Pick":
mu = torch.relu(tmp + self.theta8_Pick_linear(xi))
elif name == "Delivery":
mu = torch.relu(tmp + self.theta8_Delivery_linear(xi))
elif name == "Depot":
mu = torch.relu(tmp + self.theta8_Depot_linear(xi))
else:
mu = torch.relu(tmp)
return mu # (p_dim)
def Struct2Vec(graph, p_dim=128, R=4):
# R denotes the iterations of var mu
node_list = graph.copy() # 小图的节点列表
ser_num_list = [] # mapping table
for node in node_list:
ser_num_list.append(node.serial_number)
for node in node_list:
node.serial_number = ser_num_list.index(node.serial_number)
for edge in node.edges:
edge.to = ser_num_list.index(edge.to)
# print the type of node
for node in node_list:
print(node.type.name, node.serial_number)
node_num = len(node_list) # 小图的节点总数
mu_all = torch.zeros(node_num, p_dim)
struct2vec = struct2vec_model(p_dim)
x_all = [] # 存所有xi
for _ in range(R):
for node in node_list:
mu_N = []
wi = []
ui = []
ti = []
for edge in node.edges:
mu_N.append(mu_all[edge.to].unsqueeze(0))
wi.append(edge.length)
ui.append(edge.energy)
ti.append(edge.time)
if len(mu_N) > 0:
mu_N = torch.cat(mu_N)
else:
mu_all[node.serial_number] = torch.zeros(p_dim)
continue
wi = torch.Tensor(wi).unsqueeze(1)
ui = torch.Tensor(ui).unsqueeze(1)
ti = torch.Tensor(ti).unsqueeze(1)
xi = []
if node.type.name == "Start":
xi.append(node.type.battery_size)
xi.append(node.type.initial_energy)
xi.append(node.type.capacity)
xi.append(node.type.used_capacity)
xi = torch.Tensor(xi)
elif node.type.name == "Pick":
xi.append(node.type.pickup_deadline)
xi.append(node.type.capacity_required)
xi.append(node.type.time)
xi.append(node.type.distance)
xi.append(node.type.energy)
xi.append(node.type.Hq)
xi.append(node.type.constant)
xi = torch.Tensor(xi)
elif node.type.name == "Delivery":
xi.append(node.type.delivery_deadline)
xi.append(node.type.capacity_required)
xi = torch.Tensor(xi)
elif node.type.name == "Depot":
xi.append(node.type.R)
xi = torch.Tensor(xi)
else:
xi = torch.Tensor([0])
mu_all[node.serial_number] = struct2vec(node.type.name, xi, mu_N, wi, ui, ti)
x_all.append(xi)
# print(list(struct2vec.named_parameters()))
return x_all, mu_all, ser_num_list
if __name__ == '__main__':
import numpy as np
from GenetateBigGraph import generate_big_graph
from TourGraphCreation import single_car_tour_graph
torch.set_printoptions(threshold=np.nan) # show all data
graph, requests = generate_big_graph(node_num=10, lower_bound=1, high_bound=100, request_num=3, depot_num=1)
graph = single_car_tour_graph(graph, requests)
x_all, mu_all, ser_num_list = Struct2Vec(graph)
print(x_all)
print(mu_all)
print(ser_num_list)