-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
51 lines (42 loc) · 1.57 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from flask import Flask, request, jsonify
from flask.logging import create_logger
import logging
import pandas as pd
# from sklearn.externals import joblib
import joblib
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
LOG = create_logger(app)
LOG.setLevel(logging.INFO)
def scale(payload):
"""Scales Payload"""
LOG.info("Scaling Payload: %s payload")
scaler = StandardScaler().fit(payload)
scaled_adhoc_predict = scaler.transform(payload)
return scaled_adhoc_predict
@app.route("/")
def home():
html = "<h3>Sklearn Prediction Home</h3>"
return html.format(format)
# TO DO: Log out the prediction value
@app.route("/predict", methods=['POST'])
def predict():
# Performs an sklearn prediction
try:
# Load pretrained model as clf. Try any one model.
# clf = joblib.load("./Housing_price_model/LinearRegression.joblib")
# clf = joblib.load("./Housing_price_model/StochasticGradientDescent.joblib")
clf = joblib.load("./Housing_price_model/GradientBoostingRegressor.joblib")
except:
LOG.info("JSON payload: %s json_payload")
return "Model not loaded"
json_payload = request.json
LOG.info("JSON payload: %s json_payload")
inference_payload = pd.DataFrame(json_payload)
LOG.info("inference payload DataFrame: %s inference_payload")
scaled_payload = scale(inference_payload)
prediction = list(clf.predict(scaled_payload))
return jsonify({'prediction': prediction})
if __name__ == "__main__":
app.debug = True
app.run(host='0.0.0.0', port=5000, debug=True)