-
Notifications
You must be signed in to change notification settings - Fork 33
/
qr_extractor.py
236 lines (198 loc) · 9.15 KB
/
qr_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import math
import cv2
import numpy as np
BLUR_VALUE = 3
SQUARE_TOLERANCE = 0.15
AREA_TOLERANCE = 0.15
DISTANCE_TOLERANCE = 0.25
WARP_DIM = 300
SMALL_DIM = 29
def count_children(hierarchy, parent, inner=False):
if parent == -1:
return 0
elif not inner:
return count_children(hierarchy, hierarchy[parent][2], True)
return 1 + count_children(hierarchy, hierarchy[parent][0], True) + count_children(hierarchy, hierarchy[parent][2], True)
def has_square_parent(hierarchy, squares, parent):
if hierarchy[parent][3] == -1:
return False
if hierarchy[parent][3] in squares:
return True
return has_square_parent(hierarchy, squares, hierarchy[parent][3])
def get_center(c):
m = cv2.moments(c)
return [int(m["m10"] / m["m00"]), int(m["m01"] / m["m00"])]
def get_angle(p1, p2):
x_diff = p2[0] - p1[0]
y_diff = p2[1] - p1[1]
return math.degrees(math.atan2(y_diff, x_diff))
def get_midpoint(p1, p2):
return [(p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2]
def get_farthest_points(contour, center):
distances = []
distances_to_points = {}
for point in contour:
point = point[0]
d = math.hypot(point[0] - center[0], point[1] - center[1])
distances.append(d)
distances_to_points[d] = point
distances = sorted(distances)
return [distances_to_points[distances[-1]], distances_to_points[distances[-2]]]
def line_intersection(line1, line2):
x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(x_diff, y_diff)
if div == 0:
return [-1, -1]
d = (det(*line1), det(*line2))
x = det(d, x_diff) / div
y = det(d, y_diff) / div
return [int(x), int(y)]
def extend(a, b, length, int_represent=False):
length_ab = math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
if length_ab * length <= 0:
return b
result = [b[0] + (b[0] - a[0]) / length_ab * length, b[1] + (b[1] - a[1]) / length_ab * length]
if int_represent:
return [int(result[0]), int(result[1])]
else:
return result
def extract(frame, debug=False):
output = frame.copy()
# Remove noise and unnecessary contours from frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
gray = cv2.GaussianBlur(gray, (BLUR_VALUE, BLUR_VALUE), 0)
edged = cv2.Canny(gray, 30, 200)
_, contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
squares = []
square_indices = []
i = 0
for c in contours:
# Approximate the contour
peri = cv2.arcLength(c, True)
area = cv2.contourArea(c)
approx = cv2.approxPolyDP(c, 0.03 * peri, True)
# Find all quadrilateral contours
if len(approx) == 4:
# Determine if quadrilateral is a square to within SQUARE_TOLERANCE
if area > 25 and 1 - SQUARE_TOLERANCE < math.fabs((peri / 4) ** 2) / area < 1 + SQUARE_TOLERANCE and count_children(hierarchy[0], i) >= 2 and has_square_parent(hierarchy[0], square_indices, i) is False:
squares.append(approx)
square_indices.append(i)
i += 1
main_corners = []
east_corners = []
south_corners = []
tiny_squares = []
rectangles = []
# Determine if squares are QR codes
for square in squares:
area = cv2.contourArea(square)
center = get_center(square)
peri = cv2.arcLength(square, True)
similar = []
tiny = []
for other in squares:
if square[0][0][0] != other[0][0][0]:
# Determine if square is similar to other square within AREA_TOLERANCE
if math.fabs(area - cv2.contourArea(other)) / max(area, cv2.contourArea(other)) <= AREA_TOLERANCE:
similar.append(other)
elif peri / 4 / 2 > cv2.arcLength(other, True) / 4:
tiny.append(other)
if len(similar) >= 2:
distances = []
distances_to_contours = {}
for sim in similar:
sim_center = get_center(sim)
d = math.hypot(sim_center[0] - center[0], sim_center[1] - center[1])
distances.append(d)
distances_to_contours[d] = sim
distances = sorted(distances)
closest_a = distances[-1]
closest_b = distances[-2]
# Determine if this square is the top left QR code indicator
if max(closest_a, closest_b) < cv2.arcLength(square, True) * 2.5 and math.fabs(closest_a - closest_b) / max(closest_a, closest_b) <= DISTANCE_TOLERANCE:
# Determine placement of other indicators (even if code is rotated)
angle_a = get_angle(get_center(distances_to_contours[closest_a]), center)
angle_b = get_angle(get_center(distances_to_contours[closest_b]), center)
if angle_a < angle_b or (angle_b < -90 and angle_a > 0):
east = distances_to_contours[closest_a]
south = distances_to_contours[closest_b]
else:
east = distances_to_contours[closest_b]
south = distances_to_contours[closest_a]
midpoint = get_midpoint(get_center(east), get_center(south))
# Determine location of fourth corner
# Find closest tiny indicator if possible
min_dist = 10000
t = []
tiny_found = False
if len(tiny) > 0:
for tin in tiny:
tin_center = get_center(tin)
d = math.hypot(tin_center[0] - midpoint[0], tin_center[1] - midpoint[1])
if d < min_dist:
min_dist = d
t = tin
tiny_found = len(t) > 0 and min_dist < peri
diagonal = peri / 4 * 1.41421
if tiny_found:
# Easy, corner is just a few blocks away from the tiny indicator
tiny_squares.append(t)
offset = extend(midpoint, get_center(t), peri / 4 * 1.41421)
else:
# No tiny indicator found, must extrapolate corner based off of other corners instead
farthest_a = get_farthest_points(distances_to_contours[closest_a], center)
farthest_b = get_farthest_points(distances_to_contours[closest_b], center)
# Use sides of indicators to determine fourth corner
offset = line_intersection(farthest_a, farthest_b)
if offset[0] == -1:
# Error, extrapolation failed, go on to next possible code
continue
offset = extend(midpoint, offset, peri / 4 / 7)
if debug:
cv2.line(output, (farthest_a[0][0], farthest_a[0][1]), (farthest_a[1][0], farthest_a[1][1]), (0, 0, 255), 4)
cv2.line(output, (farthest_b[0][0], farthest_b[0][1]), (farthest_b[1][0], farthest_b[1][1]), (0, 0, 255), 4)
# Append rectangle, offsetting to farthest borders
rectangles.append([extend(midpoint, center, diagonal / 2, True), extend(midpoint, get_center(distances_to_contours[closest_b]), diagonal / 2, True), offset, extend(midpoint, get_center(distances_to_contours[closest_a]), diagonal / 2, True)])
east_corners.append(east)
south_corners.append(south)
main_corners.append(square)
codes = []
i = 0
for rect in rectangles:
i += 1
# Draw rectangle
vrx = np.array((rect[0], rect[1], rect[2], rect[3]), np.int32)
vrx = vrx.reshape((-1, 1, 2))
cv2.polylines(output, [vrx], True, (0, 255, 255), 1)
# Warp codes and draw them
wrect = np.zeros((4, 2), dtype="float32")
wrect[0] = rect[0]
wrect[1] = rect[1]
wrect[2] = rect[2]
wrect[3] = rect[3]
dst = np.array([
[0, 0],
[WARP_DIM - 1, 0],
[WARP_DIM - 1, WARP_DIM - 1],
[0, WARP_DIM - 1]], dtype="float32")
warp = cv2.warpPerspective(frame, cv2.getPerspectiveTransform(wrect, dst), (WARP_DIM, WARP_DIM))
# Increase contrast
warp = cv2.bilateralFilter(warp, 11, 17, 17)
warp = cv2.cvtColor(warp, cv2.COLOR_BGR2GRAY)
small = cv2.resize(warp, (SMALL_DIM, SMALL_DIM), 0, 0, interpolation=cv2.INTER_CUBIC)
_, small = cv2.threshold(small, 100, 255, cv2.THRESH_BINARY)
codes.append(small)
if debug:
cv2.imshow("Warped: " + str(i), small)
if debug:
# Draw debug information onto frame before outputting it
cv2.drawContours(output, squares, -1, (5, 5, 5), 2)
cv2.drawContours(output, main_corners, -1, (0, 0, 128), 2)
cv2.drawContours(output, east_corners, -1, (0, 128, 0), 2)
cv2.drawContours(output, south_corners, -1, (128, 0, 0), 2)
cv2.drawContours(output, tiny_squares, -1, (128, 128, 0), 2)
return codes, output