From 9bceab4171914e46892cde54718d61d592f73cdc Mon Sep 17 00:00:00 2001 From: SuperKogito Date: Sun, 23 Jun 2024 16:34:01 +0000 Subject: [PATCH] deploy: 721f058965122ce58f947d3ab0b27ebee3329ccd --- index.html | 310 ++++++++++++++++++++++++++++++++++++++----------- searchindex.js | 2 +- 2 files changed, 240 insertions(+), 72 deletions(-) diff --git a/index.html b/index.html index 75caf8f..28505a5 100644 --- a/index.html +++ b/index.html @@ -195,8 +195,8 @@

Datasets#

Spoken Emotion Recognition Datasets: A collection of datasets for the purpose of emotion recognition/detection in speech. The table is chronologically ordered and includes a description of the content of each dataset along with the emotions included.

- - +
SER-Datasets#
+@@ -223,6 +223,50 @@

Datasets

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -278,7 +322,18 @@

DatasetsCC BY 4.0

- + + + + + + + + + + + + @@ -289,6 +344,86 @@

DatasetsCC BY 4.0

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -300,6 +435,28 @@

DatasetsCC BY 4.0

+ + + + + + + + + + + + + + + + + + + + + + @@ -333,40 +490,7 @@

DatasetsCC0: Public Domain

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + @@ -377,7 +501,7 @@

Datasets-

- + @@ -388,7 +512,7 @@

Datasets

+ @@ -399,7 +523,7 @@

Datasets

+ @@ -410,7 +534,7 @@

Datasets

+ @@ -421,7 +545,7 @@

Datasets

+ @@ -432,7 +556,7 @@

DatasetsCC BY-SA 4.0

- + @@ -443,7 +567,7 @@

DatasetsCC BY 4.0

- + @@ -454,7 +578,7 @@

DatasetsCC BY-NC-ND 4.0

- + @@ -465,6 +589,17 @@

Datasets

+ + + + + + + + + + @@ -520,6 +655,28 @@

DatasetsCC BY-NC-SA 4.0

+ + + + + + + + + + + + + + + + + + + + + + @@ -597,7 +754,18 @@

Datasets

+ + + + + + + + + + + + @@ -608,7 +776,7 @@

DatasetsCC BY-NC-SA 4.0

- + @@ -619,7 +787,7 @@

DatasetsCC0 1.0

- + @@ -630,7 +798,7 @@

DatasetsCC BY-NC-SA 4.0

- + @@ -641,7 +809,7 @@

Datasets

+ @@ -652,7 +820,7 @@

DatasetsCC BY-NC-SA 4.0

- + @@ -663,7 +831,7 @@

DatasetsCC BY 4.0

- + @@ -674,7 +842,7 @@

DatasetsCMU-MOSEI License

- + @@ -685,7 +853,7 @@

Datasets

+ @@ -696,7 +864,7 @@

DatasetsCMU-MOSI License

- + @@ -707,7 +875,7 @@

Datasets

+ @@ -718,7 +886,7 @@

DatasetsOpen Database License & Database Content License

- + @@ -729,7 +897,7 @@

DatasetsPermitted Non-commercial Re-use with Acknowledgment

- + @@ -740,7 +908,7 @@

Datasets

+ @@ -751,7 +919,7 @@

Datasets

+ @@ -762,7 +930,7 @@

Datasets

+ @@ -773,7 +941,7 @@

Datasets

+ @@ -784,7 +952,7 @@

Datasets

+ @@ -795,7 +963,7 @@

Datasets

+ @@ -806,7 +974,7 @@

Datasets

+ @@ -817,7 +985,7 @@

DatasetsCC BY-NC-ND 4.0

- + @@ -828,7 +996,7 @@

DatasetsCC-BY license

- + @@ -839,7 +1007,7 @@

DatasetsIEMOCAP license

- + @@ -850,7 +1018,7 @@

Datasets

+ @@ -861,7 +1029,7 @@

Datasets

+ @@ -872,7 +1040,7 @@

Datasets

+ diff --git a/searchindex.js b/searchindex.js index bc90eeb..286c230 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst"],objects:{},objnames:{},objtypes:{},terms:{"0":0,"000":0,"0435":0,"049":0,"063":0,"072":0,"083":0,"0935":0,"097":0,"1":0,"10":0,"100":0,"1000":0,"101":0,"1034":0,"104":0,"1051":0,"1085":0,"11":0,"1115":0,"112":0,"1167":0,"12":0,"12420":0,"13":0,"13285":0,"1384":0,"14":0,"1400":0,"14000":0,"144":0,"1467":0,"15":0,"154":0,"16":0,"1661":0,"17":0,"18":0,"19":0,"190":0,"1935":0,"195":0,"197":0,"2":0,"20":0,"200":0,"2000":0,"2002":0,"2005":0,"2006":0,"2007":0,"201":0,"2010":0,"2011":0,"2012":0,"2013":0,"2014":0,"2017":0,"2018":0,"2019":0,"2020":0,"2021":0,"2022":0,"2023":0,"21":0,"2199":0,"22":0,"23":0,"24":0,"240":0,"2400":0,"25":0,"250":0,"26":0,"264":0,"2656":0,"27":0,"277":0,"2800":0,"29":0,"3":0,"30":0,"3000":0,"32":0,"32700":0,"332":0,"337":0,"34":0,"347":0,"35":0,"3500":0,"352":0,"355":0,"36":0,"3749":0,"377":0,"38":0,"392":0,"398":0,"4":0,"40":0,"400":0,"41":0,"42":0,"425":0,"43":0,"431":0,"44":0,"45":0,"457":0,"46":0,"468":0,"47":0,"48":0,"480":0,"488":0,"5":0,"500":0,"53":0,"555":0,"581":0,"6":0,"607":0,"61":0,"65":0,"68":0,"6902":0,"7":0,"70":0,"7000":0,"7356":0,"7442":0,"75":0,"79":0,"792":0,"794":0,"8":0,"80":0,"800":0,"854":0,"864":0,"87":0,"88":0,"9":0,"90":0,"900":0,"91":0,"9114":0,"9365":0,"941":0,"95":0,"997":0,"long":0,"new":0,"or\u00e9au":0,"public":0,"short":0,"try":0,"while":0,A:0,And:0,BY:0,For:0,IN:0,If:0,It:0,THE:0,The:0,Then:0,With:0,academ:0,accept:0,access:0,achiev:0,acknowledg:0,acoust:0,act:0,action:0,activ:0,actor:0,actress:0,add:0,addit:0,admir:0,aeluri:0,aesdd:0,affect:0,ag:0,agent:0,agreement:0,all:0,along:0,also:0,amateur:0,america:0,american:0,amus:0,an:0,anad:0,analysi:0,anger:0,angri:0,annot:0,anoth:0,anticip:0,anton:0,anxieti:0,anxiou:0,apologet:0,appli:0,applic:0,ar:0,arab:0,aristotl:0,around:0,arous:0,art:0,artifici:0,assess:0,assign:0,associ:0,asvp:0,att:0,attent:0,attitud:0,attribut:0,audio:0,audiovisu:0,aurobinda:0,autom:0,automat:0,avail:0,balanc:0,bangla:0,banglas:0,banspemo:0,base:0,basic:0,batlin:0,bave:0,beasc:0,behaviour:0,belong:0,benchmark:0,best:0,between:0,billion:0,bjoern:0,bore:0,boredom:0,brazilian:0,british:0,bu:0,cafe:0,calm:0,can:0,canadian:0,cannot:0,captur:0,car:0,categor:0,categori:0,cc0:0,cc:0,charact:0,character:0,charg:0,chines:0,choos:0,chronolog:0,classifi:0,clip:0,cmu:0,cold:0,collabor:0,collao:0,collect:0,collectionparadigm:0,color:0,come:0,commerci:0,commun:0,comprehens:0,constantin:0,constraint:0,contain:0,contempt:0,content:0,continu:0,contributor:0,control:0,convers:0,corpu:0,correspond:0,creat:0,crema:0,criteria:0,cross:0,crowd:0,csv:0,cultur:0,d:0,danish:0,data:0,databas:0,date:0,db:0,de:0,debat:0,defin:0,demo:0,depart:0,descript:0,descriptor:0,design:0,despair:0,detail:0,detect:0,dialog:0,dialogu:0,differ:0,dimens:0,dimension:0,dimitrio:0,diphon:0,directori:0,disappoint:0,disgust:0,distant:0,divers:0,divid:0,document:0,domain:0,domin:0,downgrad:0,dyadic:0,dynam:0,each:0,eda:0,eekk:0,eight:0,elabor:0,elat:0,electroderm:0,elicit:0,emo:0,emofilm:0,emosampl:0,emosynth:0,emot:0,emotion:0,emotiontt:0,emouerj:0,emov:0,emovo:0,emozionalment:0,end:0,engin:0,english:0,enterface05:0,enthusiast:0,equal:0,equival:0,ertk:0,escorpu:0,esd:0,estonian:0,etc:0,eula:0,exampl:0,exchang:0,excit:0,experi:0,experiment:0,express:0,extract:0,eyben:0,facial:0,fear:0,featur:0,feel:0,feeltrac:0,femal:0,file:0,film:0,find:0,five:0,florian:0,fmela:0,focus:0,format:0,four:0,free:0,french:0,friend:0,friendli:0,from:0,frustrat:0,full:0,funni:0,game:0,garbag:0,gather:0,gb:0,gemep:0,gender:0,gener:0,geneva:0,gentl:0,german:0,go:0,gpl:0,greek:0,group:0,guarante:0,guilt:0,ha:0,hack:0,happi:0,help:0,here:0,hi:0,high:0,hot:0,hour:0,howev:0,http:0,human:0,hungarian:0,iemocap:0,improv:0,includ:0,indign:0,inform:0,informat:0,insight:0,instanc:0,intellig:0,intens:0,interact:0,interest:0,intern:0,interpret:0,interview:0,inton:0,introduc:0,investig:0,irrit:0,isol:0,issu:0,italian:0,its:0,japanes:0,jl:0,joi:0,journal:0,joy:0,kabisatpathi:0,kannada:0,kbe:0,keep:0,keio:0,kia:0,know:0,korean:0,kotropoulo:0,label:0,laboratori:0,languag:0,larg:0,learn:0,lego:0,let:0,level:0,licens:0,likert:0,limit:0,lingual:0,link:0,list:0,listen:0,load:0,low:0,lssed:0,machin:0,main:0,maintain:0,make:0,male:0,manipul:0,md:0,meld:0,mesd:0,method:0,mexican:0,minut:0,mistak:0,mlend:0,moder:0,monorama:0,more:0,mosei:0,mosi:0,most:0,motion:0,movi:0,msp:0,multi:0,multimod:0,multipl:0,muse:0,music:0,nation:0,nativ:0,natur:0,naturalist:0,nc:0,nd:0,neg:0,network:0,neutral:0,nine:0,nkululeko:0,non:0,nonspeech:0,nonverb:0,normal:0,north:0,notic:0,numer:0,ogvc:0,one:0,onli:0,onlin:0,open:0,opinion:0,order:0,other:0,out:0,over:0,pain:0,panic:0,paper1:0,paper2:0,paper3:0,paper4:0,paper:0,parameter:0,parti:0,partial:0,particip:0,passag:0,path:0,pe:0,peak:0,pensiv:0,peopl:0,per:0,perceiv:0,percept:0,perform:0,permit:0,persian:0,person:0,perspect:0,peruvian:0,phrase:0,plai:0,pleas:0,pleasant:0,pleasur:0,plu:0,pmemo:0,podcast:0,polit:0,portrai:0,portugues:0,posit:0,power:0,pramod:0,preprocess:0,pride:0,primari:0,prithviraj:0,pro:0,process:0,produc:0,profession:0,prompt:0,pronounc:0,prosodi:0,provid:0,psycholog:0,purpos:0,python:0,qualiti:0,quechua:0,question:0,radio:0,rage:0,ravdess:0,re:0,reaction:0,read:0,realist:0,recognit:0,recola:0,record:0,recruit:0,recurr:0,reddi:0,regard:0,releas:0,relief:0,remot:0,repetit:0,report:0,repres:0,research:0,resourc:0,restrict:0,result:0,review:0,rich:0,robot:0,routrai:0,rule:0,russian:0,ryerson:0,s:0,sa:0,sad:0,sampl:0,save:0,scale:0,scare:0,schizophrenia:0,schull:0,script:0,secondari:0,seduct:0,see:0,seen:0,semain:0,semi:0,sensori:0,sentenc:0,sentiment:0,serbian:0,seri:0,session:0,set:0,seven:0,sewa:0,shame:0,shape:0,share:0,shemo:0,show:0,signal:0,similar:0,simultan:0,singl:0,siumlat:0,six:0,size:0,sleepi:0,slightli:0,social:0,societi:0,song:0,sourc:0,spanish:0,speaker:0,speech:0,split:0,spoken:0,spontan:0,standard:0,state:0,step:0,strong:0,studi:0,style:0,subesco:0,subject:0,subseco:0,subspac:0,surpris:0,survei:0,sust:0,swain:0,syntact:0,synthes:0,synthesi:0,synthet:0,syntheticspeech:0,system:0,tabl:0,target:0,technolog:0,ten:0,tender:0,tess:0,test:0,testimoni:0,text:0,thai:0,than:0,thei:0,them:0,thessaloniki:0,thi:0,thirteen:0,three:0,toolkit:0,topic:0,toronto:0,total:0,toward:0,train:0,transcript:0,transfer:0,trustworthi:0,tv:0,two:0,typo:0,univers:0,unknown:0,unprofession:0,unseen:0,up:0,urdu:0,urlcheck:0,us:0,user:0,utter:0,v:0,valenc:0,valid:0,variabl:0,variou:0,verbal:0,verbo:0,veri:0,verif:0,version:0,ververidi:0,video:0,videos10:0,vijayarajan:0,visual:0,vit:0,viva:0,vocal:0,voic:0,vs:0,wa:0,wake:0,wakeup:0,we:0,welcom:0,well:0,were:0,western:0,which:0,who:0,wild:0,without:0,word:0,work:0,worri:0,year:0,you:0,youtub:0,zero:0},titles:["Datasets"],titleterms:{contribut:0,dataset:0,disclaim:0,recommend:0,refer:0,ser:0,tool:0}}) \ No newline at end of file +Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst"],objects:{},objnames:{},objtypes:{},terms:{"0":0,"000":0,"042":0,"0435":0,"049":0,"06":0,"063":0,"072":0,"083":0,"0935":0,"097":0,"1":0,"10":0,"100":0,"1000":0,"10045":0,"101":0,"1034":0,"104":0,"1051":0,"1085":0,"11":0,"1115":0,"112":0,"1167":0,"12":0,"1206":0,"1224":0,"12420":0,"12h":0,"13":0,"13285":0,"135":0,"1384":0,"14":0,"1400":0,"14000":0,"144":0,"1467":0,"15":0,"154":0,"16":0,"1661":0,"17":0,"18":0,"19":0,"190":0,"192":0,"1935":0,"195":0,"197":0,"2":0,"20":0,"200":0,"2000":0,"2002":0,"2005":0,"2006":0,"2007":0,"201":0,"2010":0,"2011":0,"2012":0,"2013":0,"2014":0,"2017":0,"2018":0,"2019":0,"2020":0,"2021":0,"2022":0,"2023":0,"2024":0,"21":0,"218":0,"2199":0,"22":0,"23":0,"24":0,"240":0,"2400":0,"2474":0,"25":0,"250":0,"252":0,"26":0,"264":0,"2656":0,"27":0,"277":0,"2800":0,"29":0,"2h":0,"3":0,"30":0,"300":0,"3000":0,"32":0,"32700":0,"332":0,"337":0,"34":0,"347":0,"35":0,"350":0,"3500":0,"352":0,"355":0,"36":0,"363":0,"3749":0,"377":0,"38":0,"392":0,"398":0,"399":0,"4":0,"40":0,"400":0,"41":0,"42":0,"420":0,"425":0,"43":0,"431":0,"434":0,"44":0,"45":0,"457":0,"46":0,"468":0,"47":0,"48":0,"480":0,"488":0,"5":0,"50":0,"500":0,"53":0,"555":0,"572":0,"58":0,"581":0,"6":0,"607":0,"60h":0,"61":0,"65":0,"68":0,"6902":0,"7":0,"70":0,"7000":0,"7356":0,"7442":0,"75":0,"76":0,"79":0,"792":0,"794":0,"8":0,"80":0,"800":0,"85":0,"854":0,"864":0,"87":0,"88":0,"88035":0,"9":0,"90":0,"900":0,"91":0,"9114":0,"9365":0,"941":0,"95":0,"9724":0,"997":0,"999":0,"long":0,"m\u00fcller":0,"new":0,"or\u00e9au":0,"public":0,"short":0,"try":0,"while":0,A:0,ASED:0,And:0,BY:0,For:0,IN:0,If:0,It:0,THE:0,The:0,Then:0,With:0,academ:0,accept:0,access:0,accord:0,achiev:0,acknowledg:0,acoust:0,act:0,action:0,activ:0,actor:0,actress:0,add:0,addit:0,admir:0,advanc:0,aeluri:0,aesdd:0,affect:0,ag:0,agent:0,aggreg:0,agreement:0,aishel:0,all:0,along:0,also:0,amateur:0,america:0,american:0,amhar:0,amus:0,an:0,anad:0,analysi:0,anger:0,angri:0,annot:0,anoth:0,anticip:0,anton:0,anxieti:0,anxiou:0,apach:0,apologet:0,app:0,appli:0,applic:0,ar:0,arab:0,aristotl:0,around:0,arous:0,arrous:0,art:0,artifici:0,assess:0,assign:0,associ:0,asvp:0,att:0,attent:0,attitud:0,attribut:0,audio:0,audiovisu:0,aurobinda:0,autom:0,automat:0,avail:0,averag:0,b:0,balanc:0,bangla:0,banglas:0,banspemo:0,base:0,baselin:0,basic:0,batlin:0,bave:0,beasc:0,beat:0,behavior:0,behaviour:0,belong:0,benchmark:0,best:0,between:0,beyond:0,billion:0,bjoern:0,bore:0,boredom:0,brazilian:0,british:0,bu:0,cafe:0,calm:0,can:0,canadian:0,cannot:0,cantones:0,captur:0,car:0,categor:0,categori:0,cave:0,cc0:0,cc:0,channel:0,charact:0,character:0,charg:0,chines:0,choos:0,chronolog:0,classif:0,classifi:0,clip:0,cmu:0,cold:0,collabor:0,collao:0,collect:0,collectionparadigm:0,color:0,come:0,commerci:0,commun:0,compound:0,comprehens:0,condit:0,constantin:0,constraint:0,contain:0,contempt:0,content:0,continu:0,contributor:0,control:0,convers:0,corpu:0,correspond:0,creat:0,crema:0,criteria:0,cross:0,crowd:0,csv:0,cultur:0,d:0,danish:0,data:0,databas:0,date:0,db:0,de:0,debat:0,defin:0,demo:0,depart:0,descript:0,descriptor:0,design:0,despair:0,detail:0,detect:0,dialog:0,dialogu:0,differ:0,dimens:0,dimension:0,dimitrio:0,diphon:0,directori:0,disappoint:0,disgust:0,distant:0,distinct:0,divers:0,divid:0,document:0,domain:0,domin:0,downgrad:0,drunk:0,dusha:0,dyadic:0,dynam:0,each:0,eda:0,eekk:0,eight:0,elabor:0,elat:0,electroderm:0,elicit:0,emn:0,emo:0,emofilm:0,emosampl:0,emosynth:0,emot:0,emotiom:0,emotion:0,emotiontt:0,emouerj:0,emov:0,emovi:0,emovo:0,emovom:0,emozionalment:0,end:0,engin:0,english:0,enterface05:0,enthusiast:0,equal:0,equival:0,ertk:0,escorpu:0,esd:0,estonian:0,etc:0,eula:0,exampl:0,exchang:0,excit:0,experi:0,experiment:0,express:0,extract:0,eyben:0,facial:0,fear:0,featur:0,feel:0,feeltrac:0,femal:0,file:0,film:0,find:0,five:0,florian:0,fmela:0,focus:0,format:0,four:0,free:0,french:0,friend:0,friendli:0,from:0,frustrat:0,full:0,funni:0,game:0,garbag:0,gather:0,gb:0,gemep:0,gender:0,gener:0,geneva:0,gentl:0,german:0,gestur:0,go:0,gpl:0,graphic:0,greek:0,group:0,guarante:0,guilt:0,ha:0,hack:0,happi:0,hd:0,help:0,helpless:0,here:0,hi:0,high:0,hot:0,hour:0,howev:0,http:0,human:0,hungarian:0,iemocap:0,improv:0,imz:0,includ:0,indign:0,inform:0,informat:0,insight:0,instanc:0,intellig:0,intens:0,interact:0,interest:0,intern:0,interpret:0,interview:0,inton:0,introduc:0,investig:0,irrit:0,isol:0,issu:0,italian:0,its:0,japanes:0,jl:0,joi:0,journal:0,joy:0,judg:0,kabisatpathi:0,kannada:0,kbe:0,keep:0,keio:0,kia:0,know:0,korean:0,kotropoulo:0,label:0,laboratori:0,languag:0,larg:0,learn:0,lego:0,length:0,let:0,level:0,licens:0,life:0,likert:0,limit:0,lingual:0,link:0,list:0,listen:0,load:0,low:0,lssed:0,machin:0,mafw:0,main:0,maintain:0,make:0,male:0,mandarin:0,manipul:0,md:0,mechan:0,meld:0,mesd:0,messag:0,method:0,metric:0,mexican:0,minut:0,mistak:0,mlend:0,modal:0,model:0,moder:0,mono:0,monorama:0,more:0,morgan:0,mosei:0,mosi:0,most:0,motion:0,movi:0,msp:0,multi:0,multimod:0,multipl:0,muse:0,music:0,narr:0,nation:0,nativ:0,natur:0,naturalist:0,nc:0,nd:0,neg:0,nemo:0,network:0,neutral:0,nine:0,nkululeko:0,non:0,nonspeech:0,nonverb:0,normal:0,north:0,notic:0,novel:0,numer:0,ogvc:0,omg:0,one:0,onli:0,onlin:0,open:0,opinion:0,opionion:0,order:0,other:0,out:0,over:0,pain:0,panic:0,paper1:0,paper2:0,paper3:0,paper4:0,paper:0,parameter:0,parti:0,partial:0,particip:0,passag:0,path:0,pe:0,peak:0,pensiv:0,peopl:0,per:0,perceiv:0,percept:0,perform:0,permit:0,persian:0,person:0,perspect:0,peruvian:0,phrase:0,plai:0,pleas:0,pleasant:0,pleasur:0,plu:0,pmemo:0,podcast:0,polar:0,polish:0,polit:0,portrai:0,portugues:0,posit:0,power:0,pramod:0,preprocess:0,pride:0,primari:0,prithviraj:0,pro:0,process:0,produc:0,product:0,profession:0,prompt:0,pronounc:0,prosodi:0,provid:0,psycholog:0,purpos:0,python:0,qualiti:0,quechua:0,question:0,radio:0,rage:0,rate:0,ravdess:0,raw:0,re:0,reaction:0,read:0,real:0,realist:0,recognit:0,recola:0,record:0,recruit:0,recurr:0,reddi:0,regard:0,reject:0,rel:0,releas:0,relief:0,remot:0,repetit:0,report:0,repres:0,research:0,reserv:0,resourc:0,restrict:0,result:0,review:0,rich:0,robot:0,roughli:0,routrai:0,rule:0,russian:0,ryerson:0,s:0,sa:0,sad:0,sampl:0,sarcasm:0,save:0,scale:0,scare:0,scenario:0,schizophrenia:0,schull:0,script:0,secondari:0,seduct:0,see:0,seen:0,semain:0,semant:0,semi:0,sensori:0,sentenc:0,sentiment:0,serbian:0,seri:0,session:0,set:0,seven:0,sewa:0,shame:0,shape:0,share:0,shemo:0,show:0,signal:0,similar:0,simpl:0,simultan:0,singl:0,siumlat:0,six:0,size:0,sleepi:0,slightli:0,social:0,societi:0,song:0,sourc:0,spanish:0,speaker:0,speech:0,split:0,spoken:0,spontan:0,stage:0,standard:0,state:0,step:0,storytel:0,strong:0,studi:0,style:0,subesco:0,subject:0,subseco:0,subset:0,subspac:0,supris:0,surpris:0,survei:0,sust:0,swain:0,syntact:0,synthes:0,synthesi:0,synthet:0,syntheticspeech:0,system:0,tabl:0,target:0,technolog:0,televis:0,ten:0,tender:0,tess:0,test:0,testimoni:0,text:0,thai:0,than:0,thei:0,them:0,thessaloniki:0,thi:0,thirteen:0,thorsten:0,three:0,toolkit:0,topic:0,toronto:0,total:0,toward:0,train:0,transcript:0,transfer:0,trustworthi:0,tt:0,tv:0,two:0,typo:0,univers:0,unknown:0,unprofession:0,unseen:0,up:0,urdu:0,urlcheck:0,us:0,user:0,utter:0,v:0,valenc:0,valid:0,variabl:0,varieti:0,variou:0,verbal:0,verbo:0,veri:0,verif:0,version:0,ververidi:0,vesu:0,video:0,videos10:0,vijayarajan:0,visual:0,vit:0,viva:0,vocal:0,voic:0,vs:0,wa:0,wake:0,wakeup:0,we:0,welcom:0,well:0,were:0,western:0,which:0,whisper:0,who:0,wild:0,without:0,word:0,work:0,worri:0,year:0,you:0,youtub:0,zero:0},titles:["Datasets"],titleterms:{contribut:0,dataset:0,disclaim:0,recommend:0,refer:0,ser:0,tool:0}}) \ No newline at end of file
SER-Datasets#

nEmo

2024

3 hours of samples recorded with the participation of nine actors.

6 emotions: anger, fear, happiness, sadness, surprised, and neutral.

Audio

0.434 GB

Polish

nEMO: Dataset of Emotional Speech in Polish

Open

CC BY 4.0

EMOVOME

2024

999 spontaneous voice messages from 100 Spanish speakers, collected from real conversations on a messaging app.

Valence & arrousal dimensions and 7 emotions: happiness, disgust, anger, surprise, fear, sadness, and neutral.

Audio

Spanish

EMOVOME Database: Advancing Emotion Recognition in Speech Beyond Staged Scenarios

Partially open

CC BY 4.0

EMNS

2023

1206 high quality labeled utterances by one female speaker (2-3 hours).

Anger, excitement, disgust, happiness, surprise, sadness, and neutral (plus sarcasm)

Audio

0.042 GB

English (British)

EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels

Open

Apache 2.0

CAVES

2023

Full hd visual recordings of 10 native cantonese speakers uttering 50 sentences.

Anger, happiness, sadness, surprise, fear, disgust and neutral

Audio

47 GB

Chinese (cantonese)

A Cantonese Audio-Visual Emotional Speech (CAVES) dataset

Open

Available for research purposes only

BANSpEmo

2023

792 utterance recordings from 22 unprofessional speakers (11 males and 11 females) of six basic emotional reactions of two sets of sentences.

Kannada

B-SER

2022

1224 speech-audio recordings by 34 non-professional participating actors (17 male and 17 female) from diverse age groups between 19 and 47 years.

angry, happy, sad and surprise

Audio

0.363 GB

Bangla

Open

CC BY 4.0

Kannada

2022

468 audio samples, six different sentences, pronounced by thirteen people (four male and nine female), in five basic emotions plus one neutral emotion

Anger, Sadness, Surprise, Happiness, Fear, Neutral

Quechua-SER

2022

12420 audio recordings (~15 hours) and their transcriptions by 7 native speakers.

Emotional labels using dimensions: valence, arousal, and dominance.

Audio

3.53 GB

Quechua Collao

A speech corpus of Quechua Collao for automatic dimensional emotion recognition

Open

CC BY 4.0

MESD

2022

864 audio files of single-word emotional utterances with Mexican cultural shaping.

6 emotions provides single-word utterances for anger, disgust, fear, happiness, neutral, and sadness.

Audio

0.097 GB

Spanish (Mexican)

The Mexican Emotional Speech Database (MESD): elaboration and assessment based on machine learning

Open

CC BY 4.0

SyntAct

2022

Synthesized database with 997 utterances of three basic emotions and neutral expression based on rule-based manipulation for a diphone synthesizer which we release to the public

6 emotions: angry, bored, happy, neutral, sad and scared

Audio

0.941 GB

German

SyntAct: A Synthesized Database of Basic Emotions

Open

CC BY-SA 4.0

BEAT

2022

76-Hour and 30-Speaker of 4 different languages: English (60h), Chinese (12h), Spanish (2h) and Japanese (2h).

8 emotions: happiness, anger, disgust, sadness, contempt, surprise, fear, and neutral

Audio, Video

42 GB

English, Chinese, Spanish, Japanese

A Large-Scale Semantic and Emotional Multi-Modal Dataset for Conversational Gestures Synthesis

Open

Non-commercial license

Dusha

2022

+

300 000 audio recordings (~350 hours) of Russian speech, their transcripts and emotiomal labels. The dataset has two subsets: acted and real-life

+
+

4 emotions: angry, happy, sad and neutral. Arousal and valence metrics are also available.

Audio

58 GB

Russian

Large Raw Emotional Dataset with Aggregation Mechanism

Open

Public license with attribution and conditions reserved

MAFW

2022

10045 video-audio clips in the wild.

11 single-label emotion categories (anger, disgust, fear, happiness, neutral, sadness, surprise, contempt, anxiety, helplessness, and disappointment) and 32 multi-label emotion categories.

Audio, Video

MAFW: A Large-scale, Multi-modal, Compound Affective Database for Dynamic Facial Expression Recognition in the Wild

Restricted

Non-commercial research purposes

EMOVIE

2021

9724 samples with audio files and its emotion human-labeled annotation.

Polarity metrics (positive:+1, negative:-1)

Audio

0.572 GB

Chinese (Mandarin)

EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional Text-to-Speech Model

Open

CC BY-NC-SA 2.0

emoUERJ

2021

Ten sentences from eight actors, equally divided between genders, and they were free to choose the phrases for record audios in four emotions (377 audios).

Thorsten-Voice Dataset 2021.06 emotional

2021

2400 normalized mono recordings by one person (Thorsten Müller) representing 300 sentences.

Amusement, Disgust Anger, Suprise and Neutral (plus drunk, whispering and sleepy states)

Audio

0.399 GB

German

Open

CC0: Public Domain

ASED

2021

2474 recordings by 65 participants (25 females and 40 males)). Recordings were judged and rejected according to the opionion of eight judges.

Five emotions: anger, happiness, fear, sadness and neutral

Audio

0.135 GB

Amharic

A New Amharic Speech Emotion Dataset and Classification Benchmark

Open

ESCorpus-PE

2021

Spanish peruvian speech gathered from Spanish interviews, TV reports, political debate and testimonials. It contains 3749 utterances, 80 speakers (44 male and 36 female), created from Youtube audios

Quechua-SER

2022

12420 audio recordings (~15 hours) and their transcriptions by 7 native speakers.

Emotional labels using dimensions: valence, arousal, and dominance.

Audio

3.53 GB

Quechua Collao

A speech corpus of Quechua Collao for automatic dimensional emotion recognition

Open

CC BY 4.0

MESD

2022

864 audio files of single-word emotional utterances with Mexican cultural shaping.

6 emotions provides single-word utterances for anger, disgust, fear, happiness, neutral, and sadness.

Audio

0.097 GB

Spanish (Mexican)

The Mexican Emotional Speech Database (MESD): elaboration and assessment based on machine learning

Open

CC BY 4.0

SyntAct

2022

Synthesized database of three basic emotions and neutral expression based on rule-based manipulation for a diphone synthesizer which we release to the public

997 utterances including 6 emotions: angry, bored, happy, neutral, sad and scared

Audio

0.941 GB

German

SyntAct: A Synthesized Database of Basic Emotions

Open

CC BY-SA 4.0

LSSED

LSSED

2021

LSSED: A Large-Scale Dataset and Benchmark for Speech Emotion Recognition

Anger, happiness, sadness, disappointment, boredom, disgust, excitement, fear, surprise, normal, and other.

MLEnd

MLEnd

2021

~32700 audio recordings files produced by 154 speakers. Each audio recording corresponds to one English numeral (from “zero” to “billion”)

Intonations: neutral, bored, excited and question

ASVP-ESD

ASVP-ESD

2021

~13285 audio files collected from movies, tv shows and youtube containing speech and non-speech.

12 different natural emotions (boredom, neutral, happiness, sadness, anger, fear, surprise, disgust, excitement, pleasure, pain, disappointment) with 2 levels of intensity.

ESD

ESD

2021

29 hours, 3500 sentences, by 10 native English speakers and 10 native Chinese speakers.

5 emotions: angry, happy, neutral, sad, and surprise.

MuSe-CAR

MuSe-CAR

2021

40 hours, 6,000+ recordings of 25,000+ sentences by 70+ English speakers (see db link for details).

continuous emotion dimensions characterized using valence, arousal, and trustworthiness.

THAI SER

THAI SER

2021

The recordings are 41 hours, 36 minutes long (27,854 utterances), and were performed by 200 professional actors (112 female, 88 male).

5 main emotions assigned to actors: Neutral, Anger, Happiness, Sadness, and Frustration.

French Emotional Speech Database - Oréau

French Emotional Speech Database - Oréau

2020

79 utterances with 10 to 13 utterances pro emotion by 32 non-professional speakers.

7 emotions: sadness, anger, disgust, fear, surprise, joy, neutral.

Att-HACK

Att-HACK

2020

25 speakers interpreting 100 utterances in 4 social attitudes, with 3-5 repetitions each per attitude for a total of around 30 hours of speech.

expressive speech in French, 100 phrases with multiple versions (3 to 5) in four social attitudes (friendly, distant, dominant and seductive).

MSP-Podcast corpus

MSP-Podcast corpus

2020

100 hours by over 100 speakers (see db link for details).

This corpus is annotated with emotional labels using attribute-based descriptors (activation, dominance and valence) and categorical labels (anger, happiness, sadness, disgust, surprised, fear, contempt, neutral and other).

AISHELL-3

2020

Roughly 85 hours of emotion-neutral recordings spoken by 218 native Chinese mandarin speakers and total 88035 utterances.

Neutral

Audio

19 GB

Chinese (Mandarin)

AISHELL-3: A Multi-speaker Mandarin TTS Corpus and the Baselines

Open

Apache 2.0

BEASC

2020

Bangla Emotional Audio-Speech Corpus

VESUS

2019

252 distinct phrases, each read by 10 actors totalling 6 hours of speech.

5 emotions: anger, happiness, sadness, fear and neutral.

Audio

English

VESUS: A Crowd-Annotated Database to Study Emotion Production and Perception in Spoken English

Restricted

Academic EULA

Morgan Emotional Speech Set

2019

999 spontaneous voice messages from 100 Spanish speakers, collected from real conversations on a messaging app.

Valence & arrousal dimensions and 4 emotions: happiness, anger, sadness, and calmness.

Audio

0.192 GB

English

Categorical and Dimensional Ratings of Emotional Speech: Behavioral Findings From the Morgan Emotional Speech Set

Open

CC BY 4.0

PMEmo

2019

Dataset containing emotion annotations of 794 songs as well as the simultaneous electrodermal activity (EDA) signals. A Music Emotion Experiment was well-designed for collecting the affective-annotated music corpus of high quality, which recruited 457 subjects.

RAVDESS

OMG Emotion

2018

420 relatively long emotion videos with an average length of 1 minute, collected from a variety of Youtube channels.

7 emotions:anger, disgust, fear, happy, sad, surprise and neutral. Plus valence, arousal.

Audio, Video

English

The OMG-Emotion Behavior Dataset

Open

CC BY-NC-SA 3.0

RAVDESS

2018

7356 recordings by 24 actors.

7 emotions: calm, happy, sad, angry, fearful, surprise, and disgust

JL corpus

JL corpus

2018

2400 recording of 240 sentences by 4 actors (2 males and 2 females).

5 primary emotions: angry, sad, neutral, happy, excited. 5 secondary emotions: anxious, apologetic, pensive, worried, enthusiastic.

CaFE

CaFE

2018

6 different sentences by 12 speakers (6 fmelaes + 6 males).

7 emotions: happy, sad, angry, fearful, surprise, disgust and neutral. Each emotion is acted in 2 different intensities.

EmoFilm

EmoFilm

2018

1115 audio instances sentences extracted from various films.

5 emotions: anger, contempt, happiness, fear, and sadness.

ANAD

ANAD

2018

1384 recording by multiple speakers.

3 emotions: angry, happy, surprised.

EmoSynth

EmoSynth

2018

144 audio file labelled by 40 listeners.

Emotion (no speech) defined in regard of valence and arousal.

CMU-MOSEI

CMU-MOSEI

2018

65 hours of annotated video from more than 1000 speakers and 250 topics.

6 Emotion (happiness, sadness, anger,fear, disgust, surprise) + Likert scale.

VERBO

VERBO

2018

14 different phrases by 12 speakers (6 female + 6 male) for a total of 1167 recordings.

7 emotions: Happiness, Disgust, Fear, Neutral, Anger, Surprise, Sadness

CMU-MOSI

CMU-MOSI

2017

2199 opinion utterances with annotated sentiment.

Sentiment annotated between very negative to very positive in seven Likert steps.

MSP-IMPROV

MSP-IMPROV

2017

20 sentences by 12 actors.

4 emotions: angry, sad, happy, neutral, other, without agreement

CREMA-D

CREMA-D

2017

7442 clip of 12 sentences spoken by 91 actors (48 males and 43 females).

6 emotions: angry, disgusted, fearful, happy, neutral, and sad

Example emotion videos used in investigation of emotion perception in schizophrenia

Example emotion videos used in investigation of emotion perception in schizophrenia

2017

6 videos:Two example videos from each emotion category (angry, happy and neutral) by one female speaker.

3 emotions: angry, happy and neutral.

EMOVO

EMOVO

2014

6 actors who played 14 sentences.

6 emotions: disgust, fear, anger, joy, surprise, sadness.

RECOLA

RECOLA

2013

3.8 hours of recordings by 46 participants.

negative and positive sentiment (valence and arousal).

GEMEP corpus

GEMEP corpus

2012

Videos10 actors portraying 10 states.

12 emotions: amusement, anxiety, cold anger (irritation), despair, hot anger (rage), fear (panic), interest, joy (elation), pleasure(sensory), pride, relief, and sadness. Plus, 5 additional emotions: admiration, contempt, disgust, surprise, and tenderness.

OGVC

OGVC

2012

9114 spontaneous utterances and 2656 acted utterances by 4 professional actors (two male and two female).

9 emotional states: fear, surprise, sadness, disgust, anger, anticipation, joy, acceptance and the neutral state.

LEGO corpus

LEGO corpus

2012

347 dialogs with 9,083 system-user exchanges.

Emotions classified as garbage, non-angry, slightly angry and very angry.

SEMAINE

SEMAINE

2012

95 dyadic conversations from 21 subjects. Each subject converses with another playing one of four characters with emotions.

5 FeelTrace annotations: activation, valence, dominance, power, intensity

SAVEE

SAVEE

2011

480 British English utterances by 4 males actors.

7 emotions: anger, disgust, fear, happiness, sadness, surprise and neutral.

TESS

TESS

2010

2800 recording by 2 actresses.

7 emotions: anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral.

EEKK

EEKK

2007

26 text passage read by 10 speakers.

4 main emotions: joy, sadness, anger and neutral.

IEMOCAP

IEMOCAP

2007

12 hours of audiovisual data by 10 actors in 5 sessions.

Full: neutral state; happiness; sadness; anger; surprise; fear; disgust; frustration; excited; other. Balance 5 emotions: happiness, anger, sadness, frustration and neutral. Three dimensions: valence, arousal, dominance

Keio-ESD

Keio-ESD

2006

A set of human speech with vocal emotion spoken by a Japanese male speaker.

47 emotions including angry, joyful, disgusting, downgrading, funny, worried, gentle, relief, indignation, shameful, etc.

EMO-DB

EMO-DB

2005

800 recording spoken by 10 actors (5 males and 5 females).

7 emotions: anger, neutral, fear, boredom, happiness, sadness, disgust.

eNTERFACE05

eNTERFACE05

2005

Videos by 42 subjects, coming from 14 different nationalities.

6 emotions: anger, fear, surprise, happiness, sadness and disgust.

DES

DES

2002

4 speakers (2 males and 2 females).

5 emotions: neutral, surprise, happiness, sadness and anger