-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
289 lines (223 loc) · 12 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Transformer from scratch
class PositionalEmbedding(nn.Module):
def __init__(self,seq_len, d_model):
super().__init__()
self.T = seq_len
self.d_model = d_model
def forward(self):
even_i = torch.arange(0, self.d_model, 2).float()
odd_i = torch.arange(1, self.d_model, 2).float()
denominator = torch.pow(10000,(even_i/self.d_model))
pos = torch.arange(0, self.T).float().unsqueeze(1)
odd_pos = torch.cos(pos/denominator)
even_pos = torch.sin(pos/denominator)
stacked = torch.stack([even_pos, odd_pos], dim=2)
PE = torch.flatten(stacked, start_dim=1, end_dim=2)
return PE
# we are not using BPE, we are using character level tokenization here
class TransformerEmbedding(nn.Module):
'''
It tokenise the sentence and then add token, positional emebedding to it
'''
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN, dropout_ratio = 0.1):
super().__init__()
self.vocab_size = len(language_to_index) # language_to_index is a dictionary
self.max_sequence_length = max_sequence_length
self.embedding = nn.Embedding(self.vocab_size, d_model)
self.language_to_index = language_to_index
self.position_encoder = PositionalEmbedding(max_sequence_length, d_model)
self.dropout = nn.Dropout(dropout_ratio)
self.START_TOKEN = START_TOKEN
self.END_TOKEN = END_TOKEN
self.PADDING_TOKEN = PADDING_TOKEN
def batch_tokenize(self, batch, start_token=True, end_token=True):
def tokenize(sentence, start_token=True, end_token=True):
sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)]
# start token
if start_token:
sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN])
# end token
if end_token:
sentence_word_indicies.append(self.language_to_index[self.END_TOKEN])
# padding token
for _ in range(len(sentence_word_indicies), self.max_sequence_length):
sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN])
sentence_word_indicies = sentence_word_indicies[0:self.max_sequence_length]
return torch.tensor(sentence_word_indicies)
tokenized = []
for sentence_num in range(len(batch)):
tokenized.append( tokenize(batch[sentence_num], start_token, end_token) )
tokenized = torch.stack(tokenized)
return tokenized.to(device)
def forward(self, x,start_token = True, end_token=True):
# x: batch of sentences
x = self.batch_tokenize(x ,start_token, end_token)
x = self.embedding(x)
pos = self.position_encoder().to(device)
x = self.dropout(x + pos)
return x
class LayerNorm(torch.nn.Module):
def __init__(self, features, eps=1e-5):
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(features)) # scale parameter
self.beta = torch.nn.Parameter(torch.zeros(features)) # shift parameter
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
var = ((x - mean) ** 2).mean(-1, keepdim=True)
x_norm = (x - mean) / torch.sqrt(var + self.eps)
return self.gamma * x_norm + self.beta
class MultiHeadSA(nn.Module):
# constructor
def __init__(self, n_heads, d_model, input_dim):
super().__init__()
assert d_model % n_heads == 0 , "Invalid head_size for the given d_model"
self.n_heads = n_heads
self.d_model = d_model
self.head_size = d_model // n_heads
self.input_dim = input_dim
self.qkv_proj = nn.Linear(input_dim, 3 * d_model)
self.linear = nn.Linear(d_model, d_model)
def forward(self, X, mask = None):
B, T, C = X.shape
assert C == self.input_dim, "Input dimension does not match the model input dimension"
qkv = self.qkv_proj(X) # (B,T,3*D)
qkv = qkv.reshape(B, T, self.n_heads, 3 * self.d_model // self.n_heads)
qkv = qkv.permute(0,2,1,3)
q, k, v = torch.chunk(qkv, 3, dim=-1)
if mask is None:
attention_score = torch.softmax(q @ k.transpose(-2, -1) / (self.head_size ** 0.5), dim=-1)
else:
mask = mask.unsqueeze(1) # for broadcasting
attention_score = torch.softmax(q @ k.transpose(-2, -1) / (self.head_size ** 0.5) + mask, dim=-1)
res = attention_score @ v # (B,H,T,head_size)
res = res.permute(0,2,1,3).reshape(B, T, self.d_model)
res = self.linear(res)
return res
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout_ratio = 0.1):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout_ratio)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
x = self.dropout(x)
return x
# Encoder Layer
class EncoderLayer(nn.Module):
def __init__(self, input_dim, d_model, n_heads, d_ff, dropout_ratio = 0.1):
super().__init__()
self.n_heads = n_heads
self.d_model = d_model
self.d_ff = d_ff
self.input_dim = input_dim
self.multi_head_sa = MultiHeadSA(n_heads, d_model, input_dim)
self.ln1 = LayerNorm(d_model)
self.feed_forward = FeedForward(d_model, d_ff)
self.ln2 = LayerNorm(d_model)
self.dropout = nn.Dropout(dropout_ratio)
def forward(self, x, mask = None):
res = self.multi_head_sa(x, mask) # multi head attention
res = self.dropout(res)
res = self.ln1(res + x) # add and norm
res2 = self.feed_forward(res) # feed forward
res2 = self.dropout(res2)
out = self.ln2(res2 + res) # add and norm
return out
# Encoder
class Encoder(nn.Module):
def __init__(self, d_model, ffn, n_heads, drop_ratio , n_layers, max_sequence_length, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
super().__init__()
# embedding size = d_model in transformer paper (hardcoded positional embedding works then)
self.embedding = TransformerEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN, drop_ratio)
self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, d_model, n_heads, ffn, drop_ratio) for _ in range(n_layers)])
def forward(self, x, start_token = True, end_token=True, mask = None):
x = self.embedding(x, start_token, end_token)
for layer in self.encoder_layers:
x = layer(x, mask)
return x
# MultiHead Cross Attention
# between encoder and decoder
class MultiHeadCA(nn.Module):
def __init__(self,d_model, n_heads):
assert d_model%n_heads == 0, "Invalid head size for the given d_model"
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_size = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model)
self.kv_proj = nn.Linear(d_model, 2 * d_model)
self.linear = nn.Linear(d_model, d_model)
def forward(self,x_enc, x_dec,mask = None):
B, T, C = x_enc.shape # they usually share same dimension
kv = self.kv_proj(x_enc)
q = self.q_proj(x_dec)
kv = kv.reshape(B, -1, self.n_heads, 2 * self.head_size)
kv = kv.permute(0,2,1,3) # (B,nH,T,2*head_size)
q = q.reshape(B, -1, self.n_heads, self.head_size) # (B,T,nH,head_size)
q = q.permute(0,2,1,3)
k, v = torch.chunk(kv, 2, dim=-1)
if mask is None:
attention_score = torch.softmax(q @ k.transpose(-2, -1) / (self.head_size ** 0.5), dim=-1)
else:
mask = mask.unsqueeze(1) # for broadcasting
attention_score = torch.softmax(q @ k.transpose(-2, -1) / (self.head_size ** 0.5) + mask, dim=-1)
res = attention_score @ v
res = res.permute(0,2,1,3).reshape(B, T, self.d_model)
res = self.linear(res)
return res
# Decoder Layer
class Decoder_Layer(nn.Module):
def __init__(self, input_dim, d_model, n_heads, d_ff, dropout_ratio = 0.1):
super().__init__()
self.multi_head_sa1 = MultiHeadSA(n_heads, d_model, input_dim)
self.ln1 = LayerNorm(d_model)
self.multi_head_ca = MultiHeadCA(d_model, n_heads)
self.ln2 = LayerNorm(d_model)
self.feed_forward = FeedForward(d_model, d_ff)
self.ln3 = LayerNorm(d_model)
self.dropout = nn.Dropout(dropout_ratio)
def forward(self, x_enc, x_dec, self_attention_mask = None, cross_attention_mask = None):
res = self.multi_head_sa1(x_dec, self_attention_mask) # masked self attention
res = self.dropout(res)
res = self.ln1(res + x_dec) # add and norm
res2 = self.multi_head_ca(x_enc, res, cross_attention_mask) # cross attention
res2 = self.dropout(res2)
res2 = self.ln2(res2 + res) # add and norm
res3 = self.feed_forward(res2) # feed forward
res3 = self.dropout(res3)
out = self.ln3(res3 + res2) # add and norm
return out
class Decoder(nn.Module):
def __init__(self, d_model, ffn, n_heads, drop_ratio, n_layers, max_sequence_length, language_to_index,START_TOKEN,END_TOKEN, PADDING_TOKEN):
super().__init__()
# embedding size = d_model in transformer paper (hardcoded positional embedding works then)
self.embedding = TransformerEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN, drop_ratio)
self.decoder_layers = nn.ModuleList([Decoder_Layer(d_model, d_model, n_heads, ffn, drop_ratio) for _ in range(n_layers)])
def forward(self, x_enc, x_dec, start_token = True, end_token=True, self_attention_mask = None, cross_attention_mask = None):
x_dec = self.embedding(x_dec, start_token, end_token)
for layer in self.decoder_layers:
x_dec = layer(x_enc, x_dec, self_attention_mask, cross_attention_mask)
return x_dec
# Transformer
class Transformer(nn.Module):
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob, num_layers,max_sequence_length,
language1_to_index, language2_to_index, START_TOKEN,END_TOKEN, PADDING_TOKEN):
super().__init__()
# language1 to language2
self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers,max_sequence_length,language1_to_index,START_TOKEN,END_TOKEN, PADDING_TOKEN)
self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers,max_sequence_length,language2_to_index,START_TOKEN,END_TOKEN, PADDING_TOKEN)
self.lin_map = nn.Linear(d_model, len(language2_to_index))
def forward(self,x,y,encoder_self_attention_mask = None, decoder_self_attention_mask = None, decoder_cross_attention_mask = None, enc_start_token= False, enc_end_token = False, dec_start_token = True, dec_end_token=True):
x = self.encoder(x, start_token=enc_start_token, end_token=enc_end_token, mask = encoder_self_attention_mask)
out = self.decoder(x, y, self_attention_mask = decoder_self_attention_mask, cross_attention_mask = decoder_cross_attention_mask, start_token=dec_start_token, end_token=dec_end_token)
out = self.lin_map(out)
return out