-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbsrem_saga.py
187 lines (140 loc) · 6.6 KB
/
bsrem_saga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#
#
# Classes implementing the SAGA algorithm in sirf.STIR
#
# A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A Fast
# Incremental Gradient Method With Support for Non-Strongly
# Convex Composite Objectives,” in Advances in Neural Infor-
# mation Processing Systems, vol. 27, Curran Associates, Inc., 2014
#
# Twyman, R., Arridge, S., Kereta, Z., Jin, B., Brusaferri, L.,
# Ahn, S., ... & Thielemans, K. (2022). An investigation of stochastic variance
# reduction algorithms for relative difference penalized 3D PET image reconstruction.
# IEEE Transactions on Medical Imaging, 42(1), 29-41.
import numpy
import numpy as np
import sirf.STIR as STIR
from cil.optimisation.algorithms import Algorithm
from utils.herman_meyer import herman_meyer_order
import torch
class BSREMSkeleton(Algorithm):
''' Main implementation of a modified BSREM algorithm
This essentially implements constrained preconditioned gradient ascent
with an EM-type preconditioner.
In each update step, the gradient of a subset is computed, multiplied by a step_size and a EM-type preconditioner.
Before adding this to the previous iterate, an update_filter can be applied.
'''
def __init__(self, data, initial,
update_filter=STIR.TruncateToCylinderProcessor(),
**kwargs):
'''
Arguments:
``data``: list of items as returned by `partitioner`
``initial``: initial estimate
``initial_step_size``, ``relaxation_eta``: step-size constants
``update_filter`` is applied on the (additive) update term, i.e. before adding to the previous iterate.
Set the filter to `None` if you don't want any.
'''
super().__init__(**kwargs)
self.x = initial.copy()
self.initial = initial.copy()
self.data = data
self.num_subsets = len(data)
# compute small number to add to image in preconditioner
# don't make it too small as otherwise the algorithm cannot recover from zeroes.
self.eps = initial.max()/1e3
self.average_sensitivity = initial.get_uniform_copy(0)
for s in range(len(data)):
self.average_sensitivity += self.subset_sensitivity(s)/self.num_subsets
# add a small number to avoid division by zero in the preconditioner
self.average_sensitivity += self.average_sensitivity.max()/1e4
self.precond = initial.get_uniform_copy(0)
self.subset = 0
self.update_filter = update_filter
self.configured = True
self.subset_order = herman_meyer_order(self.num_subsets)
self.x_prev = None
self.x_update_prev = None
self.x_tilde = initial.copy()
self.x_update = initial.get_uniform_copy(0)
self.z = initial.copy()
self.gm = [self.x.get_uniform_copy(0) for _ in range(self.num_subsets)]
self.sum_gm = self.x.get_uniform_copy(0)
self.x_update = self.x.get_uniform_copy(0)
self.r = 0.1
self.v = 0 # weighted gradient sum
def subset_sensitivity(self, subset_num):
raise NotImplementedError
def subset_gradient(self, x, subset_num):
raise NotImplementedError
def subset_gradient_likelihood(self, x, subset_num):
raise NotImplementedError
def subset_gradient_prior(self, x, subset_num):
raise NotImplementedError
def epoch(self):
return self.iteration // self.num_subsets
def update(self):
if self.iteration % self.num_subsets == 0 or self.iteration == 0:
self.sum_gm = self.x.get_uniform_copy(0)
for i in range(self.num_subsets):
gm = self.subset_gradient(self.x_tilde, self.subset_order[i])
self.gm[self.subset_order[i]] = gm
self.sum_gm.add(gm, out=self.sum_gm)
self.sum_gm /= self.num_subsets
subset_choice = self.subset_order[self.subset]
g = self.subset_gradient(self.x, subset_choice)
gradient = (g - self.gm[subset_choice]) + self.sum_gm
gradient.multiply(self.x + self.eps, out=self.x_update)
self.x_update.divide(self.average_sensitivity, out=self.x_update)
if self.update_filter is not None:
self.update_filter.apply(self.x_update)
# DOwG learning rate: DOG unleashed!
self.r = max((self.x - self.initial).norm(), self.r)
self.v += self.r**2 * self.x_update.norm()**2
step_size = self.r**2 / np.sqrt(self.v)
step_size = max(step_size, 1e-3) # dont get too small
self.z.sapyb(1.0, self.x_update, step_size, out=self.z)
# threshold to non-negative
self.z.maximum(0, out=self.z)
self.x_tilde.sapyb(0.5, self.z, 0.5, out=self.x)
self.x_tilde = self.x.copy()
self.subset = (self.subset + 1) % self.num_subsets
def update_objective(self):
# required for current CIL (needs to set self.loss)
self.loss.append(self.objective_function(self.x))
def objective_function(self, x):
''' value of objective function summed over all subsets '''
v = 0
#for s in range(len(self.data)):
# v += self.subset_objective(x, s)
return v
def objective_function_inter(self, x):
''' value of objective function summed over all subsets '''
v = 0
for s in range(len(self.data)):
v += self.subset_objective(x, s)
return v
def subset_objective(self, x, subset_num):
''' value of objective function for one subset '''
raise NotImplementedError
class BSREM(BSREMSkeleton):
''' SAGA implementation using sirf.STIR objective functions'''
def __init__(self, data, obj_funs, initial, **kwargs):
'''
construct Algorithm with lists of data and, objective functions, initial estimate
and optionally Algorithm parameters
'''
self.obj_funs = obj_funs
super().__init__(data, initial, **kwargs)
def subset_sensitivity(self, subset_num):
''' Compute sensitivity for a particular subset'''
self.obj_funs[subset_num].set_up(self.x)
# note: sirf.STIR Poisson likelihood uses `get_subset_sensitivity(0) for the whole
# sensitivity if there are no subsets in that likelihood
return self.obj_funs[subset_num].get_subset_sensitivity(0)
def subset_gradient(self, x, subset_num):
''' Compute gradient at x for a particular subset'''
return self.obj_funs[subset_num].gradient(x)
def subset_objective(self, x, subset_num):
''' value of objective function for one subset '''
return self.obj_funs[subset_num](x)