-
Notifications
You must be signed in to change notification settings - Fork 3
/
edit_pretrained_relu_field.py
430 lines (392 loc) · 23.3 KB
/
edit_pretrained_relu_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from pathlib import Path
import click
import torch
import wandb
import copy
from datetime import datetime
from easydict import EasyDict
from torch.backends import cudnn
import cc3d
import numpy as np
from thre3d_atom.data.datasets import PosedImagesDataset
from thre3d_atom.modules.sds_trainer import train_sh_vox_grid_vol_mod_with_posed_images_and_sds
from thre3d_atom.modules.attn_grid_trainer import refine_edited_relu_field
from thre3d_atom.modules.volumetric_model import (
create_volumetric_model_from_saved_model,
create_volumetric_model_from_saved_model_attn,
)
from thre3d_atom.thre3d_reprs.voxels import (
create_voxel_grid_from_saved_info_dict,
create_voxel_grid_from_saved_info_dict_attn,
)
from thre3d_atom.utils.constants import NUM_COLOUR_CHANNELS
from thre3d_atom.utils.logging import log
from thre3d_atom.utils.misc import log_config_to_disk
# Age-old custom option for fast training :)
cudnn.benchmark = True
# Also set torch's multiprocessing start method to spawn
# refer -> https://github.com/pytorch/pytorch/issues/40403
# for more information. Some stupid PyTorch stuff to take care of
torch.multiprocessing.set_start_method("spawn")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# -------------------------------------------------------------------------------------
# Command line configuration for the script |
# -------------------------------------------------------------------------------------
# fmt: off
# noinspection PyUnresolvedReferences
@click.command()
# Required arguments:
@click.option("-i", "--ref_model_path", type=click.Path(file_okay=True, dir_okay=False),
required=True, help="path to the pre-trained relu field model")
@click.option("-o", "--output_path", type=click.Path(file_okay=False, dir_okay=True),
required=True, help="path for training output")
@click.option("-p", "--prompt", type=click.STRING, required=True,
help="sds prompt used for SDS based loss")
@click.option("-d", "--data_path", type=click.Path(file_okay=False, dir_okay=True),
required=True, help="path to the input dataset")
@click.option("-a", "--hf_auth_token", type=click.STRING, required=False, default="",
help="hugging face model token for stable diffusion 1.4",
show_default=True)
@click.option("-eidx", "--edit_idx", type=click.STRING, required=False, default=None,
help="index of edit item, i.e. hat")
@click.option("-oidx", "--object_idx", type=click.INT, required=False, default=None,
help="index of object, i.e. cat")
@click.option("-t", "--timestamp", type=click.INT, required=False, default=200,
help="diffusion_timestamp")
# Input dataset related arguments:
@click.option("--separate_train_test_folders", type=click.BOOL, required=False,
default=True, help="whether the data directory has separate train and test folders",
show_default=True)
@click.option("--data_downsample_factor", type=click.FloatRange(min=1.0), required=False,
default=3.0, help="downscale factor for the input images if needed."
"Note the default, for training NeRF-based scenes", show_default=True)
# Voxel-grid related arguments:
@click.option("--grid_dims", type=click.INT, nargs=3, required=False, default=(160, 160, 160),
help="dimensions (#voxels) of the grid along x, y and z axes", show_default=True)
@click.option("--grid_location", type=click.FLOAT, nargs=3, required=False, default=(0.0, 0.0, 0.0),
help="dimensions (#voxels) of the grid along x, y and z axes", show_default=True)
@click.option("--normalize_scene_scale", type=click.BOOL, required=False, default=False,
help="whether to normalize the scene's scale to unit radius", show_default=True)
@click.option("--grid_world_size", type=click.FLOAT, nargs=3, required=False, default=(3.0, 3.0, 3.0),
help="size (extent) of the grid in world coordinate system."
"Please carefully note it's use in conjunction with the normalization :)", show_default=True)
@click.option("--sh_degree", type=click.INT, required=False, default=0,
help="degree of the spherical harmonics coefficients to be used. "
"Supported values: [0, 1, 2, 3]", show_default=True)
# -------------------------------------------------------------------------------------
# !!! :) IMPORTANT OPTION :) !!! |
# -------------------------------------------------------------------------------------
@click.option("--use_relu_field", type=click.BOOL, required=False, default=True, # |
help="whether to use relu_fields or revert to traditional grids", # |
show_default=True) # |
# -------------------------------------------------------------------------------------
@click.option("--use_softplus_field", type=click.BOOL, required=False, default=True,
help="whether to use softplus_field or relu_field", show_default=True)
# Rendering related arguments:
@click.option("--render_num_samples_per_ray", type=click.INT, required=False, default=512,
help="number of samples taken per ray during rendering", show_default=True)
@click.option("--parallel_rays_chunk_size", type=click.INT, required=False, default=32768,
help="number of parallel rays processed on the GPU for accelerated rendering", show_default=True)
@click.option("--white_bkgd", type=click.BOOL, required=False, default=True,
help="whether to use white background for training with synthetic (background-less) scenes :)",
show_default=True) # this option is also used in pre-processing the dataset
# Training related arguments:
@click.option("--ray_batch_size", type=click.INT, required=False, default=84672,
help="number of randomly sampled rays used per training iteration", show_default=True)
@click.option("--train_num_samples_per_ray", type=click.INT, required=False, default=256,
help="number of samples taken per ray during training", show_default=True)
@click.option("--num_iterations_edit", type=click.INT, required=False, default=8000,
help="number of training iterations performed in the editing (SDS) stage", show_default=True)
@click.option("--scale_factor", type=click.FLOAT, required=False, default=2.0,
help="factor by which the grid is up-scaled after each stage", show_default=True)
@click.option("--learning_rate", type=click.FLOAT, required=False, default=0.03,
help="learning rate used at the beginning (ADAM OPTIMIZER)", show_default=True)
@click.option("--learning_rate_attn_learning", type=click.FLOAT, required=False, default=0.035,
help="learning rate used at the beginning (ADAM OPTIMIZER)", show_default=True)
@click.option("--lr_freq", type=click.INT, required=False, default=400,
help="frequency in which to reduce learning rate", show_default=True)
@click.option("--lr_decay_start", type=click.INT, required=False, default=5000,
help="step in which to start decreasing learning rate", show_default=True)
@click.option("--lr_gamma", type=click.FLOAT, required=False, default=0.96,
help="value of gamma for exponential lr_decay (happens per stage)", show_default=True)
@click.option("--apply_diffuse_render_regularization", type=click.BOOL, required=False, default=True,
help="whether to apply the diffuse render regularization."
"this is a weird conjure of mine, where we ask the diffuse render "
"to match, as closely as possible, the GT-possibly-specular one :D"
"can be off or on, on yields stabler training :) ", show_default=False)
@click.option("--num_workers", type=click.INT, required=False, default=4,
help="number of worker processes used for loading the data using the dataloader"
"note that this will be ignored if GPU-caching of the data is successful :)", show_default=True)
@click.option("--log_wandb", type=click.BOOL, required=False, default=False,
help="whether to use white background for training with synthetic (background-less) scenes :)",
show_default=True)
@click.option("--wandb_username", type=click.STRING, required=False, default="etaisella",
help="wandb user name used for logging", show_default=True)
@click.option("--wandb_project_name", type=click.STRING, required=False, default="Vox-E",
help="sds prompt used for SDS based loss", show_default=True)
# Various frequencies:
@click.option("--save_frequency", type=click.INT, required=False, default=500,
help="number of iterations after which a model is saved", show_default=True)
@click.option("--test_frequency", type=click.INT, required=False, default=500,
help="number of iterations after which test metrics are computed", show_default=True)
@click.option("--feedback_frequency", type=click.INT, required=False, default=200,
help="number of iterations after which rendered feedback is generated", show_default=True)
@click.option("--summary_frequency", type=click.INT, required=False, default=50,
help="number of iterations after which training-loss/other-summaries are logged", show_default=True)
# Miscellaneous modes
@click.option("--verbose_rendering", type=click.BOOL, required=False, default=False,
help="whether to show progress while rendering feedback during training"
"can be turned-off when running on server-farms :D", show_default=True)
@click.option("--fast_debug_mode", type=click.BOOL, required=False, default=False,
help="whether to use the fast debug mode while training "
"(skips testing and some lengthy visualizations)", show_default=True)
# sds specific stuff
@click.option("--do_sds", type=click.BOOL, required=False, default=True,
help="whether to use an uncertainty aware type loss",
show_default=True)
@click.option("--downsample_refine_grid", type=click.BOOL, required=False, default=False,
help="whether to downsample the attn grid when refining (good for real scenes)",
show_default=True)
@click.option("--new_frame_frequency", type=click.INT, required=False, default=1,
help="number of iterations where we work on the same pose", show_default=True)
@click.option("--density_correlation_weight", type=click.FLOAT, required=False, default=200.0,
help="weight for density correlation loss", show_default=True)
@click.option("--feature_correlation_weight", type=click.FLOAT, required=False, default=0.0,
help="weight for feature correlation loss", show_default=True)
@click.option("--tv_density_weight", type=click.FLOAT, required=False, default=0.0,
help="weight for total variation loss on densities", show_default=True)
@click.option("--tv_features_weight", type=click.FLOAT, required=False, default=0.0,
help="weight for total variation loss on densities", show_default=True)
# sds timestep scheduling:
@click.option("--sds_t_freq", type=click.INT, required=False, default=600,
help="frequency in which to reduce the max timestep in sds", show_default=True)
@click.option("--sds_t_start", type=click.INT, required=False, default=4000,
help="iteration in which to start reducing the max timestep in sds", show_default=True)
@click.option("--sds_t_gamma", type=click.FLOAT, required=False, default=0.75,
help="max timestep reduction gamma", show_default=True)
# refinement:
# -------------------------------------------------------------------------------------
# !!! :) MOST IMPORTANT OPTION :) !!! |
# -------------------------------------------------------------------------------------
@click.option("--do_refinement", type=click.BOOL, required=False, default=False, # |
help="whether to use the refinement stage for improving local edits", # |
show_default=True) # |
# -------------------------------------------------------------------------------------
@click.option("--kval", type=click.FLOAT, required=False, default=5.0,
help="k value used in graphcut", show_default=True)
@click.option("--edit_mask_thresh", type=click.FLOAT, required=False, default=0.992,
help="probability threshold for edit voxels in graph cut stage", show_default=True)
@click.option("--num_obj_voxels_thresh", type=click.INT, required=False, default=5000,
help="number of voxels to mark as object in graph cut stage", show_default=True)
@click.option("--min_num_edit_voxels", type=click.INT, required=False, default=300,
help="minimum number of voxels to mark as edit in graph cut stage", show_default=True)
@click.option("--top_k_edit_thresh", type=click.INT, required=False, default=300,
help="number of voxels to mark as edit in graph cut stage if less than minimum reached", show_default=True)
@click.option("--top_k_obj_thresh", type=click.INT, required=False, default=200,
help="number of voxels to mark as object in graph cut stage if less than minimum reached", show_default=True)
@click.option("--attn_tv_weight", type=click.FLOAT, required=False, default=0.01,
help="value of gamma for exponential lr_decay (happens per stage)", show_default=True)
@click.option("--num_iterations_refine", type=click.INT, required=False, default=1500,
help="number of training iterations performed in the refinement stage", show_default=True)
@click.option("--uncoupled_mode", type=click.BOOL, required=False, default=False,
help="removes relu field coupling and learns in image space",
show_default=True)
@click.option("--data_pose_mode", type=click.BOOL, required=False, default=False,
help="uses poses from a given dataset instead of random sampling",
show_default=True)
@click.option("--uncoupled_l2_mode", type=click.BOOL, required=False, default=False,
help="removes relu field coupling and learns in image space with the l2 loss function",
show_default=True)
@click.option("--l2_mode", type=click.BOOL, required=False, default=False,
help="switches the DCL loss function with an L2 function between density grids",
show_default=True)
@click.option("--l1_mode", type=click.BOOL, required=False, default=False,
help="switches the DCL loss function with an L1 function between density grids",
show_default=True)
@click.option("--post_process_scc", type=click.BOOL, required=False, default=False,
help="run post process strongly connected components",
show_default=True)
# fmt: on
# -------------------------------------------------------------------------------------
def main(**kwargs) -> None:
# load the requested configuration for the training:
config = EasyDict(kwargs)
# set wandb login info if required:
if config.log_wandb:
wandb.init(project=config.wandb_project_name, entity=config.wandb_username,
config=dict(config), name="test " + str(datetime.now()),
id=wandb.util.generate_id())
# parse os-checked path-strings into Pathlike Paths :)
model_path = Path(config.ref_model_path)
output_path = Path(config.output_path)
# save a copy of the configuration for reference
log.info("logging configuration file ...")
log_config_to_disk(config, output_path)
data_path = Path(config.data_path)
if config.separate_train_test_folders:
train_dataset = PosedImagesDataset(
images_dir=data_path / "train",
camera_params_json=data_path / f"train_camera_params.json",
normalize_scene_scale=config.normalize_scene_scale,
downsample_factor=config.data_downsample_factor,
rgba_white_bkgd=config.white_bkgd,
)
else:
train_dataset = PosedImagesDataset(
images_dir=data_path / "images",
camera_params_json=data_path / "camera_params.json",
normalize_scene_scale=config.normalize_scene_scale,
downsample_factor=config.data_downsample_factor,
rgba_white_bkgd=config.white_bkgd,
)
# set up image dims
im_h = train_dataset._camera_intrinsics.height
im_w = train_dataset._camera_intrinsics.width
image_dims = (im_h, im_w)
pretrained_vol_mod, _ = create_volumetric_model_from_saved_model(
model_path=model_path,
thre3d_repr_creator=create_voxel_grid_from_saved_info_dict,
device=device,
)
sds_vol_mod = copy.deepcopy(pretrained_vol_mod)
# train the model:
train_sh_vox_grid_vol_mod_with_posed_images_and_sds(
sds_vol_mod=sds_vol_mod,
pretrained_vol_mod=pretrained_vol_mod,
image_dims=image_dims,
train_dataset=train_dataset,
output_dir=output_path,
ray_batch_size=config.ray_batch_size,
num_iterations=config.num_iterations_edit,
scale_factor=config.scale_factor,
learning_rate=config.learning_rate,
lr_decay_start=config.lr_decay_start,
lr_freq=config.lr_freq,
lr_gamma=config.lr_gamma,
save_freq=config.save_frequency,
feedback_freq=config.feedback_frequency,
summary_freq=config.summary_frequency,
apply_diffuse_render_regularization=config.apply_diffuse_render_regularization,
num_workers=config.num_workers,
verbose_rendering=config.verbose_rendering,
sds_prompt=config.prompt,
new_frame_frequency=config.new_frame_frequency,
density_correlation_weight=config.density_correlation_weight,
feature_correlation_weight=config.feature_correlation_weight,
tv_density_weight=config.tv_density_weight,
tv_features_weight=config.tv_features_weight,
do_sds=config.do_sds,
sds_t_freq=config.sds_t_freq,
sds_t_start=config.sds_t_start,
sds_t_gamma=config.sds_t_gamma,
uncoupled_mode=config.uncoupled_mode,
data_pose_mode=config.data_pose_mode,
uncoupled_l2_mode=config.uncoupled_l2_mode,
log_wandb=config.log_wandb,
l2_mode=config.l2_mode,
l1_mode=config.l1_mode,
)
if config.do_refinement == True:
vol_mod_edit, _ = create_volumetric_model_from_saved_model_attn(
model_path=output_path / f"saved_models" / f"model_final.pth",
thre3d_repr_creator=create_voxel_grid_from_saved_info_dict_attn,
device=device,
)
vol_mod_obj, _ = create_volumetric_model_from_saved_model_attn(
model_path=output_path / f"saved_models" / f"model_final.pth",
thre3d_repr_creator=create_voxel_grid_from_saved_info_dict_attn,
device=device,
)
sds_vol_mod, _ = create_volumetric_model_from_saved_model_attn(
model_path=output_path / f"saved_models" / f"model_final.pth",
thre3d_repr_creator=create_voxel_grid_from_saved_info_dict_attn,
device=device,
)
# convert space separated string to list of ints
edit_idx = [int(i) for i in config.edit_idx.split()]
refine_edited_relu_field(
vol_mod_edit=vol_mod_edit,
vol_mod_object=vol_mod_obj,
vol_mod_ref=pretrained_vol_mod,
vol_mod_output=sds_vol_mod,
train_dataset=train_dataset,
hf_auth_token=config.hf_auth_token,
output_dir=output_path,
prompt=config.prompt,
edit_idx=edit_idx,
object_idx=config.object_idx,
timestamp=config.timestamp,
image_dims=image_dims,
ray_batch_size=config.ray_batch_size,
num_iterations=config.num_iterations_refine,
learning_rate=config.learning_rate_attn_learning,
save_freq=config.save_frequency,
feedback_freq=config.feedback_frequency,
summary_freq=config.summary_frequency,
apply_diffuse_render_regularization=config.apply_diffuse_render_regularization,
verbose_rendering=config.verbose_rendering,
attn_tv_weight=config.attn_tv_weight,
kval=config.kval,
edit_mask_thresh=config.edit_mask_thresh,
num_obj_voxels_thresh=config.num_obj_voxels_thresh,
min_num_edit_voxels=config.min_num_edit_voxels,
top_k_edit_thresh=config.top_k_edit_thresh,
top_k_obj_thresh=config.top_k_obj_thresh,
log_wandb=config.log_wandb,
data_pose_mode=config.data_pose_mode,
downsample_refine_grid=config.downsample_refine_grid,
)
if config.post_process_scc:
vol_mod, _ = create_volumetric_model_from_saved_model_attn(
model_path=output_path / f"saved_models" / f"model_final_refined.pth",
thre3d_repr_creator=create_voxel_grid_from_saved_info_dict_attn,
device=device,
)
orig_d = vol_mod.thre3d_repr._densities.detach().cpu().numpy()
reg_d = pretrained_vol_mod.thre3d_repr._densities.detach().cpu().numpy()
densities = np.where(vol_mod.thre3d_repr._densities.detach().cpu().numpy()> 0, 1, 0).squeeze(-1)
aa, N = cc3d.largest_k(
densities, k=10,
connectivity=26, delta=0,
return_N=True,
)
orig_d[aa != 10] = reg_d[aa != 10]
vol_mod.thre3d_repr._densities = torch.nn.Parameter(torch.Tensor(orig_d).to(vol_mod.device))
torch.save(
vol_mod.get_save_info(
extra_info={
"camera_bounds": train_dataset.camera_bounds,
"camera_intrinsics": train_dataset.camera_intrinsics,
"hemispherical_radius": train_dataset.get_hemispherical_radius_estimate(),
}
),
output_path / f"saved_models" / f"model_final_refined.pth",
)
elif config.post_process_scc:
vol_mod, _ = create_volumetric_model_from_saved_model(
model_path=output_path / f"saved_models" / f"model_final.pth",
thre3d_repr_creator=create_voxel_grid_from_saved_info_dict,
device=device,
)
orig_d = vol_mod.thre3d_repr._densities.detach().cpu().numpy()
reg_d = pretrained_vol_mod.thre3d_repr._densities.detach().cpu().numpy()
densities = np.where(vol_mod.thre3d_repr._densities.detach().cpu().numpy() > 0, 1, 0).squeeze(-1)
aa, N = cc3d.largest_k(
densities, k=10,
connectivity=26, delta=0,
return_N=True,
)
orig_d[aa != 10] = reg_d[aa != 10]
vol_mod.thre3d_repr._densities = torch.nn.Parameter(torch.Tensor(orig_d).to(vol_mod.device))
torch.save(
vol_mod.get_save_info(
extra_info={
"camera_bounds": train_dataset.camera_bounds,
"camera_intrinsics": train_dataset.camera_intrinsics,
"hemispherical_radius": train_dataset.get_hemispherical_radius_estimate(),
}
),
output_path / f"saved_models" / f"model_final.pth",
)
if __name__ == "__main__":
main()