-
Notifications
You must be signed in to change notification settings - Fork 7
/
visualize.py
295 lines (248 loc) · 11.6 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import argparse
import pdb
import re
import os
import shutil
from tqdm import tqdm
from scipy import stats
from skimage.transform import rescale
import torch
from dataloader.dataloader import CamLocDataset
from utils.learning import get_nodata_value, pick_valid_points
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import LogFormatter
def parse_argument():
"""
Parse arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument('log_path', type=str, help='Logging file path.')
parser.add_argument('--keywords', type=str, default=None, nargs='+', help='Visualize keyword values from log.')
args = parser.parse_args()
return args
def moving_average(data_set, periods=3):
weights = np.ones(periods) / periods
return np.convolve(data_set, weights, mode='valid')
def extract_training_info(log_file, task, reproj_loss=False):
if task in ['coord', 'depth', 'normal', 'semantics']:
# general training meta data
pattern = r"Iteration:\s+(?P<iter>\d+), Epoch:\s+(?P<epoch>\d+), Total loss:\s+-?(?P<ttl_loss>\d+.\d+), " \
r"Valid: (?P<valid>\d+.\d+)\%, " \
r"Avg Time: (?P<time>\d+.\d+)s"
training_iter, training_epoch, training_loss, valid_rate = [], [], [], []
with open(log_file, 'r') as file:
log = file.read()
for r in re.findall(pattern, log):
training_iter.append(float(r[0]))
training_epoch.append(int(r[1]))
training_loss.append(float(r[2]))
valid_rate.append(float(r[3]))
# specific task error
if task == 'coord':
pattern = r"Regression error: coord:\s+-?(?P<reg_error>\d+.\d+), reprojection:\s+-?(?P<reproj_error>\d+.\d+)"
task_error = [[], []]
for r in re.findall(pattern, log):
task_error[0].append(float(r[0]))
task_error[1].append(float(r[1]))
task_error = task_error[1] if reproj_loss else task_error[0]
elif task == 'depth':
pattern = r"Regression error: depth:\s+-?(?P<reg_error>\d+.\d+)"
task_error = []
for r in re.findall(pattern, log):
task_error.append(float(r[0]))
elif task == 'normal':
pattern = r"Regression error: normal in radian:\s+-?(?P<reg_error_radian>\d+.\d+), " \
r"normal in degree:\s+-?(?P<reg_error_deg>\d+.\d+)"
task_error = []
for r in re.findall(pattern, log):
task_error.append(float(r[1]))
else:
task_error = None
else:
raise NotImplementedError
return training_iter, training_epoch, training_loss, task_error, valid_rate
def plot_training_info(training_info_ls, log_ls, mode='valid', show_epoch=False, session_name=''):
# training_info is a list of [training_iter, training_epoch, training_loss, task_error, valid_rate]
moving_period = 2000 // 16 # hyper-parameter
fig_path = 'training_info_{:s}.png'.format(session_name) if session_name is not None else 'training_info.png'
fig = plt.figure(figsize=(10, 6))
len_ls, stat_y_min, stat_y_max, stat_y_mean, stat_y_std = [], [], [], [], []
for training_info, log in zip(training_info_ls, log_ls):
label = os.path.basename(os.path.dirname(log))
training_iter, training_epochs, training_loss, task_error, valid_rate = training_info
training_loss = moving_average(training_loss, moving_period)
valid_rate = moving_average(valid_rate, moving_period)
task_error = moving_average(task_error, moving_period) if task_error is not None else task_error
# re-scaled for moving average
training_iter = np.arange(len(valid_rate)) * np.max(training_iter) / len(valid_rate)
training_epochs = np.linspace(0, np.max(training_epochs), len(valid_rate))
if mode == 'loss':
y_data = training_loss
elif mode == 'valid':
y_data = valid_rate
elif mode == 'task_error':
if task_error is None:
continue
y_data = task_error
else:
raise NotImplementedError
stat_y_min.append(np.min(y_data))
stat_y_max.append(np.max(y_data))
stat_y_mean.append(np.mean(y_data))
stat_y_std.append(np.std(y_data))
if show_epoch:
x_data = training_epochs
else:
x_data = training_iter
if len(y_data) > len(x_data):
y_data = y_data[0:len(x_data)]
else:
x_data = x_data[0:len(y_data)]
if 'debug' in label:
plt.plot(x_data, y_data, label=label, linewidth=3, zorder=10)
else:
plt.plot(x_data, y_data, label=label)
len_ls.append(np.max(training_iter))
len_ls = np.array(len_ls)
# plt.xlim([0, np.max(len_ls)])
# if mode != 'valid':
# plt.ylim([0, 20])
# plt.ylim([np.min(stat_y_min), np.mean(stat_y_mean) + 3.0 * np.mean(stat_y_std)])
if mode == 'valid':
plt.ylabel('Valid pixel ratio (%)')
plt.ylim([plt.gca().get_ylim()[0], min(plt.gca().get_ylim()[1], 100)])
elif mode == 'loss':
plt.ylabel('Loss value')
elif mode == 'task_error':
plt.ylabel("Task specific error")
else:
raise NotImplementedError
if show_epoch:
plt.xlabel('Epochs')
else:
plt.xlabel('Gradient steps')
plt.legend(bbox_to_anchor=(1.0, 0.8), loc='center left')
fig.subplots_adjust(right=0.7)
plt.savefig(fig_path, bbox_inches='tight', pad_inches=0.1, dpi=150)
# plt.show()
plt.close(fig)
print('Curve saved to {:s}'.format(fig_path))
def plot_results_info(results_ls, log_ls, selected_labels):
fig_path = 'results_info.png'
len_ls = []
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
colors_ls = matplotlib.cm.prism(np.linspace(0, 1, len(log_ls)))
for i, ((r_err, t_err), log) in enumerate(zip(results_ls, log_ls)):
label = os.path.basename(log).replace('comballaz_lhs_sim', '').replace('poses_model_', '').replace('.txt', '').replace('__', '')
label = label.replace('comballaz_lhs_init', '').replace('.pth', '').replace('.net', '')
label = label[1:] if label[0] == '_' else label
label = ''
finish_loop = False
for selected_label in selected_labels:
if selected_label in label or 'all' in selected_label:
finish_loop = True
break
if not finish_loop:
continue
axes[0].hist(r_err, label=label, bins=1024, cumulative=True, density=True, color=colors_ls[i], alpha=0.3)
axes[1].hist(t_err, label=label, bins=1024, cumulative=True, density=True, color=colors_ls[i], alpha=0.3)
axes[0].set_ylim([0, 1])
axes[1].set_ylim([0, 1])
# axes[0].hist(r_err, label=label, bins=1024, alpha=0.5, color=colors_ls[i])
# axes[1].hist(t_err, label=label, bins=1024, alpha=0.5, color=colors_ls[i])
axes[0].plot([np.median(r_err)]*50, np.linspace(*axes[0].get_ylim(), 50),
label=label+'Median={:.1f}deg'.format(np.median(r_err)), color=colors_ls[i])
axes[1].plot([np.median(t_err)]*50, np.linspace(*axes[1].get_ylim(), 50),
label=label+'Median={:.1f}m'.format(np.median(t_err)), color=colors_ls[i])
len_ls.append(len(r_err))
axes[0].set_xlim([0, 15])
axes[1].set_xlim([0, 100])
axes[0].set_xlabel('Rotational error (deg)', fontsize=18)
axes[1].set_xlabel('Translational error (m)', fontsize=18)
axes[0].set_ylabel('Cumulative probability', fontsize=18)
axes[1].set_ylabel('Cumulative probability', fontsize=18)
# axes[0].legend(bbox_to_anchor=(1.0, 0.8), loc='center left')
# axes[1].legend(bbox_to_anchor=(1.0, 0.8), loc='center left')
axes[0].legend(loc='center right', fontsize=18)
axes[1].legend(loc='center right', fontsize=18)
fig.subplots_adjust(wspace=0.3)
plt.savefig(fig_path, bbox_inches='tight', pad_inches=0.05)
plt.show()
plt.close(fig)
print('Results info curve saved to {:s}'.format(fig_path))
def search_directory(log_path, keywords):
"""Search for the log files."""
if os.path.isdir(log_path):
assert keywords is not None, "Keywords must be enabled when log_path is a file!"
log_path = os.path.abspath(log_path)
log_path_ls = []
for root, dirs, files in os.walk(log_path):
for file in files:
if 'output.log' in file:
flag_keyword = all([keyword in os.path.join(root, file) for keyword in keywords])
if flag_keyword:
log_path_ls.append(os.path.join(root, file))
elif os.path.isfile(log_path):
assert keywords is None, "Keywords must be disabled when log_path is a file!"
assert 'output.log' in os.path.basename(log_path), "log file {:s} not supported!".format(log_path)
log_path_ls = [log_path]
else:
raise NotImplementedError
log_path_ls = sorted(log_path_ls)
tasks_ls = []
for log in log_path_ls:
if 'coord' in os.path.dirname(log):
tasks_ls.append('coord')
elif 'depth' in os.path.dirname(log):
tasks_ls.append('depth')
elif 'normal' in os.path.dirname(log):
tasks_ls.append('normal')
elif 'semantics' in os.path.dirname(log):
tasks_ls.append('semantics')
else:
raise NotImplementedError
print("With keywords {}, {:d} log files are found.".format(keywords, len(log_path_ls)))
return log_path_ls, tasks_ls
def main():
args = parse_argument()
log_ls, task_ls = search_directory(args.log_path, args.keywords)
# manually add some selection criteria
selected_labels = ['all']
# selected_labels = ['coord']
# selected_labels = ['depth']
# selected_labels = ['normal']
# selected_labels = ['finetune']
# selected_labels = ['real_only']
# selected_labels = ['oop-rc1.00-finetune']
# selected_labels = ['pairs-ip-rc1.0']
# selected_labels = ['decoder']
# selected_labels = ['sim_only']
# selected_labels = ['sc0.25']
# selected_labels = ['sc0.50']
# selected_labels = ['sc0.75']
_log_ls, _task_ls = log_ls.copy(), task_ls.copy()
log_ls, task_ls = [], []
for log, task in zip(_log_ls, _task_ls):
flag_select = any([keyword in log for keyword in selected_labels])
flag_select = True if 'all' in selected_labels else flag_select
if flag_select:
log_ls.append(log)
task_ls.append(task)
assert len(log_ls), "There is no available logs to read and plot!"
reproj_loss = False
# obtain valid rate
training_info_ls = []
for log, task in zip(log_ls, task_ls):
# result is a tuple, training_iter, training_epoch, training_loss, task_error, valid_rate
training_info_ls.append(extract_training_info(log, task, reproj_loss))
# make the plot
plot_training_info(training_info_ls, log_ls, mode='valid', show_epoch=False, session_name='valid_by_iter')
plot_training_info(training_info_ls, log_ls, mode='valid', show_epoch=True, session_name='valid_by_epoch')
plot_training_info(training_info_ls, log_ls, mode='loss', show_epoch=False, session_name='loss_by_iter')
plot_training_info(training_info_ls, log_ls, mode='loss', show_epoch=True, session_name='loss_by_epoch')
plot_training_info(training_info_ls, log_ls, mode='task_error', show_epoch=False, session_name='task_error_by_iter')
plot_training_info(training_info_ls, log_ls, mode='task_error', show_epoch=True, session_name='task_error_by_epoch')
if __name__ == '__main__':
main()