forked from TRI-ML/road
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·172 lines (141 loc) · 6.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import math
import os
import torch
import torch.nn as nn
import torch.optim as optim
import yaml
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import data
import wandb
from data.utils import to_cuda, get_cell_size, collate_fn
from evaluate import evaluate
from nets.orthanet import OrthaNet as ONet
from utils import io
def train(cfg):
""" Main training function """
# Wandb Logger
wandb.init(project=cfg.wandb, entity='tri', mode=os.getenv('WANDB_MODE', 'run'),
config=cfg)
cfg = wandb.config
# Prepare data
trainset = data.get_dataset(cfg, 'training')
if cfg.curriculum:
trainset.lod_current = cfg.curriculum
else:
trainset.lod_current = cfg.lods
trainloader = torch.utils.data.DataLoader(trainset, batch_size=cfg.batch_size, shuffle=True,
num_workers=cfg.cpu_threads, pin_memory=True, collate_fn=collate_fn)
# Load model
onet = ONet(cfg.latent_size, lods=cfg.lods, feat_combine=cfg.latent_combine, num_layers=cfg.num_layers,
hidden_dim=cfg.hidden_dim, decoder_layers=cfg.decoder_layers).to(
cfg.device)
# Create a feature per object
feats = {}
num_models = len(trainset.models)
feats['idx'] = [m['idx'] for m in trainset.models]
feats['embedding'] = nn.Embedding(num_models, cfg.latent_size).to(cfg.device)
torch.nn.init.normal_(feats['embedding'].weight.data, 0, 1 / math.sqrt(cfg.latent_size))
# Optimizer
optimizer = optim.Adam(
[
{'params': onet.parameters(), 'lr': cfg.learning_rate},
{'params': feats['embedding'].parameters(), 'lr': cfg.learning_rate_latent}
],
lr=cfg.learning_rate)
# Recover model and features
if cfg.path_net:
onet_dict = torch.load(os.path.join(cfg.path_net, 'onet.pt'))
onet.load_state_dict(onet_dict['model'], strict=False)
optimizer.load_state_dict(onet_dict['optimizer'])
feats['embedding'] = nn.Embedding.from_pretrained(onet_dict['feats']['embedding'].weight)
feats['idx'] = onet_dict['feats']['idx']
print('Network restored!')
# Losses
loss_dict = {}
loss_ce = torch.nn.CrossEntropyLoss()
score_best = float('inf')
# Scaler and scheduler
scaler = GradScaler()
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=cfg.scheduler_step, gamma=cfg.scheduler_decay
)
# Training
for epoch in range(cfg.epochs_max):
onet.train()
# Training loop
pbar = tqdm(enumerate(trainloader), total=len(trainloader))
for i, gt in pbar:
with autocast():
# Bring GT to device
gt = to_cuda(gt, cfg.device)
# Zero gradients
optimizer.zero_grad()
# Get output
feats_batch = feats['embedding'](gt['idx'])
pred_lod = onet(feats_batch, gt, lod_current=trainset.lod_current)
# Compute losses
losses_occ, losses_sdf, losses_nrm, losses_rgb = [], [], [], []
for lod in range(1, trainset.lod_current + 1):
losses_occ.append(
loss_ce(pred_lod[lod]['occ'].permute(0, 2, 1), gt[lod]['occ'].long())) # Occupancy loss
losses_sdf.append(
(pred_lod[lod]['sdf'] - gt[lod]['sdf']).
norm(p=2, dim=-1).mean() / get_cell_size(lod)) # SDF loss
losses_nrm.append(
(pred_lod[lod]['nrm'] - gt[lod]['nrm']).norm(p=2, dim=-1).mean()) # Surface normals loss
loss_dict['OCC'] = torch.stack(losses_occ).mean() * cfg.w_occ
loss_dict['SDF'] = torch.stack(losses_sdf).mean() * cfg.w_sdf
loss_dict['NRM'] = torch.stack(losses_nrm).mean() * cfg.w_nrm
# Combine losses
loss = sum(loss_dict.values())
# Backward computation
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
# Register losses (W&B)
log_str = 'Epoch {}, Loss: '.format(epoch)
for text, val in loss_dict.items():
log_str += '{} - {:.6f}, '.format(text, val)
# W&B logger
if i % cfg.iter_log == 0:
wandb.log({text: val})
wandb.log({'LR': scheduler.get_last_lr()[0]})
pbar.set_description(log_str)
# Store model
if epoch > 0 and epoch % cfg.epoch_analyze == 0:
# Validation
metrics = evaluate(cfg, onet=onet, testset=trainset, feats=feats, lod_current=trainset.lod_current)
wandb.log({'Chamfer': metrics['chamfer']})
wandb.log({'Confidence': metrics['conf']})
wandb.log({'LoD': trainset.lod_current})
if metrics['chamfer'] < score_best:
sv_file = {
'model': onet.state_dict(),
'optimizer': optimizer.state_dict(),
'feats': feats,
}
if cfg.path_output:
os.makedirs(cfg.path_output, exist_ok=True)
torch.save(sv_file, os.path.join(cfg.path_output, 'onet.pt'))
else:
torch.save(sv_file, os.path.join(wandb.run.dir, 'onet.pt'))
score_best = metrics['chamfer']
# Level switcher
if metrics['conf'] > cfg.conf_thres and trainset.lod_current < cfg.lods:
trainset.lod_current += 1
print('Welcome to level {}!'.format(trainset.lod_current))
def main():
# Parse input
args = io.parse_input()
# Save config
os.makedirs(args.path_output, exist_ok=True)
with open(os.path.join(args.path_output, 'cfg.yaml'), 'w') as yamlfile:
yaml.dump(vars(args), yamlfile)
yamlfile.close()
print("Config saved")
# Start training
train(args)
if __name__ == '__main__':
main()