Skip to content

Latest commit

 

History

History
110 lines (64 loc) · 7.19 KB

File metadata and controls

110 lines (64 loc) · 7.19 KB

Engagement Detection for DAiSEE and VRESEE datasets Using Hybrid EfficientNetB7 Together With TCN LSTM and-Bi-LSTM

Students Engagement Level Detection in Online e-Learning Using Hybrid EfficientNetB7 Together With TCN, LSTM, and Bi-LSTM

Tasneem Selim, Islam Elkabani, Mohamed A. Abdou

General badge General badge PWC

Static Badge TensorFlow Badge Static Badge Static Badge Static Badge Static Badge Static Badge Static Badge Static Badge Static Badge Static Badge

Abstract:

Students engagement level detection in online e-learning has become a crucial problem due to the rapid advance of digitalization in education. In this paper, a novel Videos Recorded for Egyptian Students Engagement in E-learning (VRESEE) dataset is introduced for students engagement level detection in online e-learning. This dataset is based on an experiment conducted on a group of Egyptian college students by video recording them during online e-learning sessions. Each recorded video is labeled with a value from 0 to 3 representing the level of engagement of each student during the online session. Moreover, three new hybrid end-to-end deep learning models have been proposed for detecting student’s engagement level in an online e-learning video. These models are evaluated using the VRESEE dataset and also using a public Dataset for the Affective States in E-Environment (DAiSEE). The first proposed hybrid model uses EfficientNet B7 together with Temporal Convolution Network (TCN) and achieved an accuracy of 64.67% on DAiSEE and 81.14% on VRESEE. The second model uses a hybrid EfficientNet B7 along with Long Short Term Memory (LSTM) and reached an accuracy of 67.48% on DAiSEE and 93.99% on VRESEE. Finally, the third hybrid model uses EfficientNet B7 along with a Bidirectional LSTM and achieved an accuracy of 66.39% on DAiSEE and 94.47% on VRESEE. The results of the first, second and third proposed models outperform the results of currently existing models by 1.08%, 3.89%, and 2.8% respectively in students engagement level detection.

FIGURE 1. The preprocessing of VRESEE video files

Dataset Preprocessing

FIGURE 2. The model architecture.

The model architecture

FIGURE 3. The EfficientNet B7 architecture.

The EfficientNet B7 architecture

Project Structure and Usage

This project was prepared to run on Colab

There are several steps:

1- Prepare the dataset

  • Utilize the "separate_data_into_4_classes.ipynb" file to preprocess the dataset
  • This notebook facilitates the division of the dataset into four distinct categories, with each category allocated to a separate folder
  • Modification of the following five variables within the notebook is necessary to adapt it for use with either the same dataset or a different dataset (e.g., VRESEE)
  • The five variables: "csv_file", "existing_path_prefix", "new_path_prefix_0", "new_path_prefix_1", "new_path_prefix_2", and "new_path_prefix_3"

2- Augmentation

  • Employ the "DAISEE-AugClass0&1.ipynb" file to implement augmentation techniques specifically tailored for class 0 and class 1
  • Adaptation of the notebook to accommodate a different dataset (e.g., VRESEE) is feasible by solely modifying the paths within the fourth cell

3- Feature Extraction using EfficientNet B7

  • Adjust the paths to correspond with your specific directory structure.

a- For the DAiSEE dataset:

"DAISEETrain-FeatureExtractionUsingEfficientNetB7.ipynb" and "DAISEEValidate&Test-FeatureExtractionUsingEfficientNetB7.ipynb" files are utilized to extract features from the Train, Validate, and Test splits of the DAiSEE dataset

b- For the VRESEE dataset:

"EgyptianTrain-FeatureExtractionUsingEfficientNetB7.ipynb" and "EgyptianValidate&Test-FeatureExtractionUsingEfficientNetB7.ipynb" files are employed to extract features from the Train, Validate, and Test splits of the VRESEE dataset

4- Train, test, and tune the models

  • Update the paths for all the following files to match your directory structure
  • Load the spatially extracted features and utilize them to train the models for capturing temporal information

a- For the DAiSEE dataset

"DAISEEEfficientNetB7TCN.ipynb", "DAISEEEfficientNetB7lstm.ipynb", and "DAISEEEfficientNetB7BiLSTM.ipynb" files are designated for training, tuning, and testing TCN, LSTM, and Bi-LSTM models, respectively.

b- For the VRESEE dataset

"EgyptianEfficientNetB7TCN.ipynb", "EgyptianEfficientNetB7lstm.ipynb", and "EgyptianEfficientNetB7BiLSTM.ipynb" files are utilized for training, tuning, and testing TCN, LSTM, and Bi-LSTM models, respectively.

Cite

If any part of our paper or code is helpful to your work, please generously cite with:

@article{selim2022students,
  title={Students engagement level detection in online e-learning using hybrid efficientnetb7 together with tcn, lstm, and bi-lstm},
  author={Selim, Tasneem and Elkabani, Islam and Abdou, Mohamed A},
  journal={IEEE Access},
  volume={10},
  pages={99573--99583},
  year={2022},
  publisher={IEEE}
}