Terkild Brink Buus 30/3/2020
Including libraries, plotting and color settings and custom utility functions
set.seed(114)
require("Seurat", quietly=T)
require("tidyverse", quietly=T)
library("Matrix", quietly=T)
library("patchwork", quietly=T)
## Load ggplot theme and defaults
source("R/ggplot_settings.R")
## Load helper functions
source("R/Utilities.R")
## Load predefined color schemes
source("R/color.R")
## Load feature_rankplot functions
source("R/feature_rankplot.R")
source("R/feature_rankplot_hist.R")
source("R/feature_rankplot_hist_custom.R")
outdir <- "figures"
data.Seurat <- "data/5P-CITE-seq_Titration.rds"
data.abpanel <- "data/Supplementary_Table_1.xlsx"
data.markerStats <- "data/markerByClusterStats.tsv"
## Make a custom function for formatting the concentration scale
scaleFUNformat <- function(x) sprintf("%.2f", x)
Subset to only focus on conditions with 200k or 1 mio cells and dilution factor 4 (thus comparing 50µl to 25µl staining volume with 1 mio or 200k PBMCs at staining).
object <- readRDS(file=data.Seurat)
## Show number of cells from each sample
table(object$group)
##
## PBMC_50ul_1_1000k PBMC_50ul_4_1000k PBMC_25ul_4_1000k PBMC_25ul_4_200k
## 1777 1777 1777 1777
## Lung_50ul_1_500k Lung_50ul_4_500k Doublet Negative
## 1681 1681 0 0
object <- subset(object, subset=dilution == "DF4" & cellsAtStaining %in% c("200k","1000k"))
object
## An object of class Seurat
## 33572 features across 5331 samples within 3 assays
## Active assay: RNA.kallisto (33514 features)
## 2 other assays present: HTO.kallisto, ADT.kallisto
## 3 dimensional reductions calculated: pca, tsne, umap
color.volnum <- c("50µl_1000k"="#0082c8","25µl_1000k"="#f58231","25µl_200k"="#911eb4")
shape.volnum <- c("50µl_1000k"=21,"25µl_1000k"=22,"25µl_200k"=23)
object$volnum <- factor(paste(object$volume,object$cellsAtStaining,sep="_"),levels=names(color.volnum))
Marker stats is reused in other comparisons and was calculated in the end of the preprocessing vignette.
abpanel <- data.frame(readxl::read_excel(data.abpanel))
rownames(abpanel) <- abpanel$Marker
## As we are only working with dilution factor 4 samples here, we want to show labels accordingly
# a bit of a hack...
abpanel$conc_µg_per_mL <- abpanel$conc_µg_per_mL/4
markerStats <- read.table(data.markerStats)
markerStats.PBMC <- markerStats[markerStats$tissue == "PBMC",]
rownames(markerStats) <- paste(markerStats$marker,markerStats$tissue,sep="_")
## Make a ordering vector ordering markers per concentration and total UMI count
marker.order <- markerStats.PBMC$marker[order(markerStats.PBMC$conc_µg_per_mL, markerStats.PBMC$UMItotal, decreasing=TRUE)]
head(abpanel)
## Marker Category Alias Clone Isotype_Mouse Corresponding_gene
## CD103 CD103 B <NA> BerACT8 IgG1 ITGAE
## CD107a CD107a B LAMP1 H4A3 IgG1 LAMP1
## CD117 CD117 E C-kit 104D2 IgG1 KIT
## CD11b CD11b B <NA> ICRF44 IgG1 ITGAM
## CD123 CD123 E <NA> 6H6 IgG1 IL3RA
## CD127 CD127 E IL7Ralpha A019D5 IgG1 IL7R
## TotalSeqC_Tag BioLegend_Cat Stock_conc_µg_per_mL conc_µg_per_mL
## CD103 0145 350233 500 0.31250
## CD107a 0155 328649 500 0.62500
## CD117 0061 313243 500 0.62500
## CD11b 0161 301359 500 0.15625
## CD123 0064 306045 500 0.12500
## CD127 0390 351356 500 0.31250
## dilution_1x
## CD103 400
## CD107a 200
## CD117 200
## CD11b 800
## CD123 1000
## CD127 400
head(markerStats)
## marker tissue fineCluster nCells UMIsum nth median f90 UMItotal
## CD103_PBMC CD103 PBMC 1 638 1740 5.0 2 5.0 5082
## CD103_Lung CD103 Lung 16 132 7084 187.0 5 187.0 60252
## CD107a_PBMC CD107a PBMC 1 638 7757 26.3 8 26.3 13396
## CD107a_Lung CD107a Lung 12 260 11674 99.2 15 99.2 23273
## CD117_PBMC CD117 PBMC 1 638 1318 4.0 2 4.0 3316
## CD117_Lung CD117 Lung 21 32 1695 41.0 41 130.4 5878
## Category Alias Clone Isotype_Mouse Corresponding_gene
## CD103_PBMC B <NA> BerACT8 IgG1 ITGAE
## CD103_Lung B <NA> BerACT8 IgG1 ITGAE
## CD107a_PBMC B LAMP1 H4A3 IgG1 LAMP1
## CD107a_Lung B LAMP1 H4A3 IgG1 LAMP1
## CD117_PBMC E C-kit 104D2 IgG1 KIT
## CD117_Lung E C-kit 104D2 IgG1 KIT
## TotalSeqC_Tag BioLegend_Cat Stock_conc_µg_per_mL conc_µg_per_mL
## CD103_PBMC 145 350233 500 1.25
## CD103_Lung 145 350233 500 1.25
## CD107a_PBMC 155 328649 500 2.50
## CD107a_Lung 155 328649 500 2.50
## CD117_PBMC 61 313243 500 2.50
## CD117_Lung 61 313243 500 2.50
## dilution_1x marker.y DSB.cutoff positive count pct
## CD103_PBMC 400 CD103 7 14 1777 0.79
## CD103_Lung 400 CD103 7 501 1681 29.80
## CD107a_PBMC 200 CD107a 7 122 1777 6.87
## CD107a_Lung 200 CD107a 7 150 1681 8.92
## CD117_PBMC 200 CD117 7 3 1777 0.17
## CD117_Lung 200 CD117 7 32 1681 1.90
Make tSNE plots colored by cell type, cluster and tissue of origin.
p.tsne.volume <- DimPlot(object, group.by="volnum", reduction="tsne", pt.size=0.1, combine=FALSE)[[1]] + theme_get() + facet_wrap(~"Volume") + scale_color_manual(values=color.volnum)
p.tsne.cluster <- DimPlot(object, group.by="supercluster", reduction="tsne", pt.size=0.1, combine=FALSE)[[1]] + theme_get() + scale_color_manual(values=color.supercluster) + facet_wrap(~"Cell types")
p.tsne.finecluster <- DimPlot(object, label=TRUE, label.size=3, reduction="tsne", group.by="fineCluster", pt.size=0.1, combine=FALSE)[[1]] + theme_get() + facet_wrap( ~"Clusters") + guides(col=F)
p.tsne.cluster + p.tsne.finecluster + p.tsne.volume
Extract UMI data and calculate UMI sum per marker within each condition.
## Get the data
ADT.matrix <- data.frame(GetAssayData(object, assay="ADT.kallisto", slot="counts"))
ADT.matrix$marker <- rownames(ADT.matrix)
ADT.matrix$conc <- abpanel[ADT.matrix$marker,"conc_µg_per_mL"]
ADT.matrix <- ADT.matrix %>% pivot_longer(c(-marker,-conc))
## Get cell annotations
cell.annotation <- FetchData(object, vars=c("volnum"))
## Calculate marker sum from each dilution within both tissues
ADT.matrix.agg <- ADT.matrix %>% group_by(volume=cell.annotation[name,"volnum"], marker, conc) %>% summarise(sum=sum(value))
## Order markers by concentration
ADT.matrix.agg$marker.byConc <- factor(ADT.matrix.agg$marker, levels=marker.order)
## Extract marker annotation
ann.markerConc <- abpanel[marker.order,]
ann.markerConc$Marker <- factor(marker.order, levels=marker.order)
ADT.matrix.agg.total <- ADT.matrix.agg
Samples stained with diluted Ab panel have reduced ADT counts.
p.UMIcountsPerCondition <- ggplot(ADT.matrix.agg.total[order(-ADT.matrix.agg$conc, -ADT.matrix.agg$sum),], aes(x=volume, y=sum/10^6, fill=conc)) +
geom_bar(stat="identity", col=alpha(col="black",alpha=0.05)) +
scale_fill_viridis_c(trans="log2", labels=scaleFUNformat, breaks=c(0.0375,0.15,0.625,2.5,10)) +
scale_y_continuous(expand=c(0,0,0,0.05)) +
labs(fill="DF4\nµg/mL", y=bquote("ADT UMI counts ("~10^6~")")) +
guides(fill=guide_colourbar(reverse=T)) +
theme(panel.grid.major=element_blank(), axis.title.x=element_blank(), panel.border=element_blank(), axis.line = element_line(), legend.position="right")
p.UMIcountsPerCondition
Plot total UMI counts for each marker at the investigated dilution factors (DF1 vs. DF4). To ease readability, we place dashed lines between each concentration.
## Calculate "breaks" where concentration change.
lines <- length(marker.order)-cumsum(sapply(split(ann.markerConc$Marker,ann.markerConc$conc_µg_per_mL),length))+0.5
lines <- data.frame(breaks=lines[-length(lines)])
## Make a marker by concentration "heatmap"
p.markerByConc <- ggplot(ann.markerConc, aes(x=1, y=Marker, fill=conc_µg_per_mL)) +
geom_tile(col=alpha(col="black",alpha=0.2)) +
geom_hline(data=lines,aes(yintercept=breaks), linetype="dashed", alpha=0.5) +
scale_fill_viridis_c(trans="log2") +
labs(fill="µg/mL") +
theme_get() +
theme(axis.ticks.x=element_blank(), axis.title = element_blank(), axis.text.x=element_blank(), panel.grid=element_blank(), legend.position="right", plot.margin=unit(c(0.1,0.1,0.1,0.1),"mm")) + scale_x_continuous(expand=c(0,0))
## Make UMI counts per Marker plot
p.UMIcountsPerMarker <- ggplot(ADT.matrix.agg, aes(x=marker.byConc,y=log2(sum))) +
geom_line(aes(group=marker), size=1, color="#666666", alpha=0.5) +
ggbeeswarm::geom_quasirandom(aes(group=volume, fill=volume, pch=volume), size=1, dodge.width=-0.75) +
geom_vline(data=lines,aes(xintercept=breaks), linetype="dashed", alpha=0.5) +
scale_fill_manual(values=color.volnum) +
scale_y_continuous(breaks=c(9:17)) +
scale_shape_manual(values=shape.volnum) +
ylab("log2(UMI sum)") +
guides(fill=guide_legend(override.aes=list(size=1.5), ncol=1, reverse=FALSE)) +
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), legend.position="bottom", legend.justification="left", legend.title.align=0, legend.key.width=unit(0.2,"cm"), legend.title=element_blank()) +
coord_flip()
## Combine plot with markerByConc annotation heatmap
plotUMIcountsPerMarker <- p.markerByConc + guides(fill=F) + p.UMIcountsPerMarker + guides(fill=F, shape=F) + plot_spacer() + guide_area() + plot_layout(ncol=4, widths=c(1,30,0.1), guides='collect')
plotUMIcountsPerMarker
Using a specific percentile may be prone to outliers in small clusters (i.e. the 90th percentile of a cluster of 30 will be the #3 higest cell making it prone to outliers). We thus set a threshold of the value to only be the 90th percentile if cluster contains more than 100 cells. For smaller clusters, the median is used. Expressing cluster is identified in the “preprocessing” vignette.
## Get the data
ADT.matrix <- data.frame(GetAssayData(object, assay="ADT.kallisto", slot="counts"))
ADT.matrix$marker <- rownames(ADT.matrix)
ADT.matrix$conc <- abpanel[ADT.matrix$marker,"conc_µg_per_mL"]
ADT.matrix <- ADT.matrix %>% pivot_longer(c(-marker,-conc))
## Get cell annotations
cell.annotation <- FetchData(object, vars=c("volnum", "fineCluster"))
## Calculate marker statistics from each dilution within each cluster
ADT.matrix.agg <- ADT.matrix %>% group_by(volume=cell.annotation[name,"volnum"], fineCluster=cell.annotation[name,"fineCluster"], marker, conc) %>% summarise(sum=sum(value), median=quantile(value, probs=c(0.9)), nth=nth(value))
ADT.matrix.agg$tissue == "PBMC"
## logical(0)
## Use data for the previously determined expressing cluster.
Cluster.max <- markerStats[markerStats$tissue == "PBMC",c("marker","fineCluster")]
Cluster.max$fineCluster <- factor(Cluster.max$fineCluster)
ADT.matrix.aggByClusterMax <- Cluster.max %>% left_join(ADT.matrix.agg)
ADT.matrix.aggByClusterMax$marker.byConc <- factor(ADT.matrix.aggByClusterMax$marker, levels=marker.order)
p.UMIinExpressingCells <- ggplot(ADT.matrix.aggByClusterMax, aes(x=marker.byConc, y=log2(nth))) +
geom_line(aes(group=marker), size=1, alpha=0.5, color="#666666") +
ggbeeswarm::geom_quasirandom(aes(group=volume, fill=volume, pch=volume), size=1, show.legend=FALSE, dodge.width=-0.75) +
geom_vline(data=lines,aes(xintercept=breaks), linetype="dashed", alpha=0.5) +
geom_text(aes(label=paste0(fineCluster," ")), y=Inf, adj=1, size=1.5) +
scale_fill_manual(values=color.volnum) +
scale_shape_manual(values=shape.volnum) +
scale_y_continuous(breaks=c(0:11), labels=2^c(0:11), expand=c(0.05,0.5)) +
ylab("90th percentile UMI of expressing cluster") +
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), legend.position="right", legend.justification="left", legend.title.align=0, legend.key.width=unit(0.2,"cm")) +
coord_flip()
## Combine plot with markerByConc annotation heatmap
UMIinExpressingCells <- p.markerByConc + theme(legend.position="none") + p.UMIinExpressingCells + theme(legend.position="none") + plot_spacer() + plot_layout(ncol=4, widths=c(1,30,0.1), guides='collect')
UMIinExpressingCells
Most markers are largely unaffected by reducing staining volume. However, some antibodies used at low concentrations and targeting abundant epitopes are affected, an example of such is CD31:
## Make helper function for plotting titration plots
titrationPlot <- function(marker, gate.PBMC=NULL, gate.Lung=NULL, y.axis=FALSE, show.gate=TRUE, legend=FALSE){
curMarker.name <- marker
## Get antibody concentration for legends
curMarker.DF1conc <- abpanel[curMarker.name, "conc_µg_per_mL"]
if(show.gate==TRUE){
## Load gating percentages from manually set DSB thresholds
gate <- data.frame(gate=markerStats[markerStats$marker == curMarker.name & markerStats$tissue== "PBMC",c("pct")])
gate$gate <- 1-(gate$gate/100)
rownames(gate) <- gate$wrap
## Allow manual gating
if(!is.null(gate.PBMC)) gate <- gate.PBMC
} else {
gate <- NULL
}
p <- feature_rankplot_hist_custom(data=object,
marker=paste0("adt_",curMarker.name),
group="volnum",
barcodeGroup="supercluster",
conc=curMarker.DF1conc,
legend=legend,
yaxis.text=y.axis,
gates=gate,
histogram.colors=color.volnum,
title=curMarker.name)
return(p)
}
p.CD31 <- titrationPlot("CD31", legend=TRUE)
p.CD31
A <- p.UMIcountsPerCondition + theme(legend.key.width=unit(0.3,"cm"),
legend.key.height=unit(0.4,"cm"),
legend.text=element_text(size=unit(5,"pt")),
plot.margin=unit(c(0.3,0,0,0),"cm"))
B1 <- p.markerByConc + theme(text = element_text(size=10),
plot.margin=unit(c(0.3,0,1,0),"cm"),
legend.position="none")
B2 <- p.UMIcountsPerMarker + theme(legend.position="none")
C <- p.UMIinExpressingCells + theme(legend.position="none")
BC.legend <- cowplot::get_legend(p.UMIcountsPerMarker +
theme(legend.position="bottom",
legend.direction="horizontal",
legend.background=element_blank(),
legend.box.background=element_blank(),
legend.key=element_blank(),
legend.key.height=unit(2,"mm")))
D <- p.CD31 + theme(plot.margin=unit(c(0.5,0,0,0),"cm"))
AD <- cowplot::plot_grid(A,D,NULL,
ncol=1,
rel_heights = c(14,16,1.5),
labels=c("A","D",""),
label_size=panel.label_size,
vjust=panel.label_vjust,
hjust=panel.label_hjust)
BC <- cowplot::plot_grid(B1, B2, C,
nrow=1,
rel_widths=c(2,10,10),
align="h",
axis="tb",
labels=c("B", "", "C"),
label_size=panel.label_size,
vjust=panel.label_vjust,
hjust=panel.label_hjust)
p.final <- cowplot::ggdraw(plot_grid(AD, BC, nrow=1, rel_widths=c(1.2,4), align="v", axis="l")) +
cowplot::draw_plot(BC.legend,0.27,0.023,0.2,0.00001)
png(file=file.path(outdir,"Supplementary Figure S5.png"),
width=figure.width.full,
height=4.7,
units = figure.unit,
res=figure.resolution,
antialias=figure.antialias)
p.final
dev.off()
## png
## 2
p.final
For supplementary information.
plots.columns = 6
rows.max <- 5
markers <- abpanel[rownames(object[["ADT.kallisto"]]),]
markers <- markers[order(markers$Category, markers$Marker),]
plots <- list()
## Make individual plots for each marker
for(i in 1:nrow(markers)){
curMarker <- markers[i,]
curMarker.name <- curMarker$Marker
y.axis <- ifelse((i-1) %in% c(0,6,12,18,24,30,36,42,48),TRUE,FALSE)
plots[[curMarker.name]] <- titrationPlot(curMarker.name, y.axis=y.axis)
}
# a bit of a hack to make celltype legend
p.legend <- cowplot::get_legend(ggplot(data.frame(supercluster=object$supercluster),
aes(color=supercluster,x=1,y=1)) +
geom_point(shape=15, size=1.5) +
scale_color_manual(values=color.supercluster) +
theme(legend.title=element_blank(),
legend.margin=margin(0,0,0,0),
legend.key.size = unit(0.15,"cm"),
legend.position = c(0.98,1.1),
legend.justification=c(1,1),
legend.direction="horizontal"))
plots.num <- length(plots)
plots.perPage <- plots.columns*rows.max
plots.pages <- ceiling(plots.num/plots.perPage)
## Make a supplementary figure split into pages
for(i in 1:plots.pages){
start <- (i-1)*plots.perPage+1
end <- i*plots.perPage
end <- min(end,plots.num)
curPlots <- c(start:end)
plots.rows <- ceiling(length(curPlots)/plots.columns)
curPlots <- cowplot::plot_grid(plotlist=plots[curPlots],ncol=plots.columns, rel_widths=c(1.1,1,1,1,1,1), align="h", axis="tb")
curPlots.layout <- cowplot::plot_grid(NULL, p.legend, curPlots, vjust=-0.5, hjust=panel.label_hjust, label_size=panel.label_size, ncol=1, rel_heights= c(0.5, 1.3, 70/5*plots.rows))
png(file=file.path(outdir,paste0("Supplementary Figure X",LETTERS[i],".png")),
units=figure.unit,
res=figure.resolution,
width=figure.width.full,
height=(2*plots.rows),
antialias=figure.antialias)
print(curPlots.layout)
dev.off()
print(curPlots.layout)
}