-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
523 lines (429 loc) · 22.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#!/usr/bin/env python3
import csv
import datetime
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import seaborn as sns
from scipy import stats
# requires xlrd for reading Excel
# 'member' incl 12 months grace period, otherwise strict i.e. paid, eligible for voting
logic = 'member'
# input file from CiviCRM
input_file_location = r"C:\....\Report_20190209-659.csv"
# member data for time before CiviCRM
history_file_location = r"C:\....\pre_civic.xlsx"
# where you want to have your charts saved
chart_location = r"C:\....\Member Stats\\"
# numbers of mappers per country from Pascal Neis
# https://tools.neis-one.org/tmp/20181118_AvgOSMContributors.txt
mappers_file = r"C:\.....\20181118_AvgOSMContributors.txt"
# number of month to read from CiviCRM dump. 37 = January 2019, increase as appropriate
data_range = 37
# charts will be displayed on screen, set to True if you don't want that
headless = False
# matplotlib figsize for standard charts i.e. except bar chart with OSMF members and mappers per country
figsize_x = 8 # default value 8
figsize_y = 6 # default value 6
def str2date(s):
"""converts a string from CiviCRM to a date"""
d = None
try:
d = datetime.datetime.strptime(s, "%Y-%m-%d")
finally:
return d
def make_neat(jumble):
"""read thre CiviCRM csv file
returns a unique list of members with
[0] Membership Type, [1] = Start Date, [2] = End Date, [3] = Join Date
[4] = E-Mail, [5] = name, [6] = country
"""
return_list = list()
for item in jumble:
# if chancelled, a valid entry exists too with different dates, so it would be counted twice otherwise
if item[5] != 'Chancelled':
return_list.append(
[item[1], str2date(item[2]), str2date(item[3]), str2date(item[4]), item[6], item[0], item[7]])
# make list unique
return_list = [list(x) for x in set(tuple(x) for x in return_list)]
return return_list
def by_months(l_members, l_data_range):
"""generates a list with numbers for each member category for each month
returns list with
[0] date [1] No of normal Members [2] No of Associate Members,
[3] No of Fee Waiver Member [4] No of Corporate Member
"""
return_list = list()
for i in range(0, l_data_range):
finished_members = set([]) # store members we have already processed
if logic == 'member':
d1 = datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1)
d2 = datetime.datetime(2015 + int(i / 12), i % 12 + 1, 1)
else:
d1 = datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1)
d2 = datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1)
s = dict()
for m in l_members:
tester = m[4] + m[5] # kind of hash to remember already processed members
if m[1] and m[1] < d1 and d2 < m[2] and tester not in finished_members:
s[m[0]] = s.get(m[0], 0) + 1
finished_members.add(tester)
return_list.append([datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1), s.get('Normal Member', 0),
s.get('Associate Member', 0), s.get('Fee-waiver Member', 0), s.get('Corporate Member', 0)])
return return_list
def by_country(l_members, l_data_range):
"""returns a list with number of members without Corporate Members for each country
returned list is descending sorted by number of members
returns list with
[0] name [1] number of members ex corp"""
countries = dict()
end_period = l_data_range - 1
d1 = datetime.datetime(2016 + int(end_period / 12), end_period % 12 + 1, 1)
d2 = datetime.datetime(2015 + int(end_period / 12), end_period % 12 + 1, 1)
finished_members = set([]) # store members we have already processed
for m in l_members:
tester = m[4] + m[5]
if m[0] != "Corporate Member" and m[1] and m[1] <= d1 and d2 < m[2] and tester not in finished_members:
countries[m[6]] = countries.get(m[6], 0) + 1
finished_members.add(tester)
sorted_country_list = list()
for item in sorted(countries, key=countries.get, reverse=True):
sorted_country_list.append([item, countries[item]])
return sorted_country_list
def print_member_history_chart(l_total_history_df):
"""generates a
- line chart with the different member types by months
- stacked area chart with the different member types by months
saves charts as *.png and displays the charts if headless != True"""
# print the line chart
# select a nice stylesheet
# https://matplotlib.org/examples/style_sheets/style_sheets_reference.html
matplotlib.style.use('bmh')
ax = l_total_history_df[['normalMember', 'associateMember', 'feeWaiverMember', 'corporateMember']].plot(
figsize=(figsize_x, figsize_y))
ax.legend(('Normal Members', 'Associate Members', 'Fee-waiver Members', 'Corporate Members'), loc="upper left")
ax.set_ylabel('')
ax.set_xlabel('')
plt.ylim([0, None])
plt.title("OSMF Membership Statistics", fontweight='bold', fontsize=14)
filename = 'history.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
# print stacked area chart
ax = l_total_history_df[['feeWaiverMember', 'corporateMember', 'associateMember', 'normalMember']].plot.area(
figsize=(figsize_x, figsize_y))
ax.legend(('Fee-waiver Members', 'Corporate Members', 'Associate Members', 'Normal Members'), loc="upper left")
ax.set_ylabel('Numbers stacked')
ax.set_xlabel('')
plt.title("OSMF Membership Statistics", fontweight='bold', fontsize=14)
filename = 'history2.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
def print_by_continent(l_history_by_continent_df):
"""generates a
- line chart with number of members by continent
- stacked area chart with number of members by continent
saves charts as *.png and displays the charts if headless != True
needs input dataframe with OSMF members in columns
[0] date [1] africa [2] asia [3] europe [4] north america [5] oceanian [6] south america [7] other"""
# print the line chart
# select a nice stylesheet
# https://matplotlib.org/examples/style_sheets/style_sheets_reference.html
# columns = 'date', 'Africa', 'Asia', 'Europe', 'North America', 'South America', 'Oceania', 'unknown'
matplotlib.style.use('seaborn')
ax = l_history_by_continent_df[['unknown', 'Oceania', 'South America', 'Africa', 'Asia', 'North America', 'Europe']]\
.plot(figsize=(figsize_x, figsize_y))
ax.legend(('unknown', 'Oceania', 'South America', 'Africa', 'Asia', 'North America', 'Europe'), loc="upper left")
ax.set_ylabel('')
ax.set_xlabel('')
plt.ylim([0, None])
plt.title("OSMF Membership Statistics", fontweight='bold', fontsize=14)
plt.figtext(0.01, 0.01, 'ex Corporate Members', horizontalalignment='left', fontsize=8)
filename = 'historyContinent.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
# print stacked area chart
ax = l_history_by_continent_df[['unknown', 'Oceania', 'South America', 'Africa', 'Asia', 'North America', 'Europe']]\
.plot.area(figsize=(figsize_x, figsize_y))
ax.legend(('unknown', 'Oceania', 'South America', 'Africa', 'Asia', 'North America', 'Europe'), loc="upper left")
ax.set_ylabel('Numbers stacked')
ax.set_xlabel('')
plt.title("OSMF Membership Statistics", fontweight='bold', fontsize=14)
plt.figtext(0.01, 0.01, 'ex Corporate Members', horizontalalignment='left', fontsize=8)
filename = 'historyContinent2.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
def pie_print_by_country(l_members_by_country, l_data_range):
"""generates a
- donut chart with number of members by country
saves chart as *.png and displays the chart if headless != True"""
# minimum percent of a country to be labeled in the chart
label_min = 1.0 / 100
day = 1
months = (l_data_range - 1) % 12 + 1
year = 2016 + int(data_range - 1) / 12
date = str(int(year)) + '/' + str(months) + '/' + str(day)
labels = list()
sizes = list()
total = 0
for l_line in l_members_by_country:
total = total + l_line[1]
for l_line in l_members_by_country:
if float(l_line[1]) / total > label_min:
labels.append((l_line[0] + ' (' + '{:.1%}'.format(float(l_line[1]) / total) + ')'))
else:
labels.append(' ')
sizes.append(l_line[1])
fig, ax = plt.subplots(gridspec_kw=dict(bottom=0.05), figsize=(figsize_x, figsize_y))
plt.title("OSMF Membership Statistics", fontweight='bold', fontsize=14 )
ax.pie(sizes, labels=labels, startangle=90, textprops={'fontsize': 12})
plt.figtext(0.01, 0.01, ('as of ' + date + ' ex Corporate Members'), horizontalalignment='left', fontsize=8)
# add some white spaces to avoid overlaps and broken labels
plt.subplots_adjust(bottom=0.05, right=0.87)
# draw with circle that makes a pie chart to a donut chart
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
ax.axis('equal')
plt.tight_layout()
filename = 'byCountry.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
def bar_print_by_country(l_members_by_country, l_data_range, l_mappers_file):
"""generates a
- bar chart
i) with number of OSMF members by country
ii) with number of mappers per country, loaded from Pascal Neis' input file
saves chart as *.png and displays the chart if headless != True
special request from user stereo i.e. Guillaume Rischard
Must be scaled huge to be readable
"""
# minimum percent of a country to be labeled in the chart
label_min = 0.3 / 100
day = 1
months = (l_data_range - 1) % 12 + 1
year = 2016 + int(l_data_range - 1) / 12
date = str(int(year)) + '/' + str(months) + '/' + str(day)
labels = list()
osmf_sizes = list()
mapper_sizes = list()
mappers = dict()
total = 0
for l_line in l_members_by_country:
total = total + l_line[1]
with open(l_mappers_file) as f:
content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
for l_line in content:
country = l_line.split("\t")
mappers[country[0]] = country[1]
for l_line in l_members_by_country:
if float(l_line[1]) / total >= label_min:
labels.append((l_line[0] + ' (' + '{:.1%}'.format(float(l_line[1]) / total) + ')'))
else:
labels.append(' ')
osmf_sizes.append(l_line[1])
if l_line[0] == "Iran, Islamic Republic of":
mapper_sizes.append(mappers.get('Iran', 0))
elif l_line[0] == "Russian Federation":
mapper_sizes.append(mappers.get('Russia', 0))
elif l_line[0] == "Côte d'Ivoire":
mapper_sizes.append(mappers.get('Ivory Coast', 0))
elif l_line[0] == "Congo, The Democratic Republic of":
mapper_sizes.append(mappers.get('Congo - Kinshasa', 0))
elif l_line[0] == "Myanmar":
mapper_sizes.append(mappers.get('Myanmar(Burma)', 0))
elif mappers.get(l_line[0], 0) == 0:
print(l_line[0], ' not found')
mapper_sizes.append(mappers.get(l_line[0], 0))
else:
mapper_sizes.append(mappers.get(l_line[0], 0))
l_mapper_members_df = pd.DataFrame(
{'Country': labels,
'OSMF Members': osmf_sizes,
'OSM Mappers': mapper_sizes
})
print(l_mapper_members_df)
l_mapper_members_df['OSM Mappers'] = l_mapper_members_df['OSM Mappers'].astype(np.int64)
y_pos = np.arange(len(labels))
fig, ax = plt.subplots()
# Create horizontal bars
l_mapper_members_df.plot(kind='barh', legend=True, fontsize=8, figsize=(28, 12), ax=ax)
plt.title("OSMF Membership Statistics", fontweight='bold', fontsize=14)
plt.figtext(0.01, 0.01, ('OSMF as of ' + date + '- Mapper as of Nov 2018 - ex Corporate Members' + ' - Countries with less than {:.1%}'.format(float(label_min)) + ' left blank intentionally'), horizontalalignment='left', fontsize=8)
# plt.subplots_adjust(right=0.97, left=0.08, bottom=0.05)
# Create names on the y-axis
plt.yticks(y_pos, labels)
fig.tight_layout()
fig.subplots_adjust(bottom=0.05)
filename = 'byCountry1.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
return l_mapper_members_df
def mapper_member_regression(l_mapper_members_df):
""""prints a chart with a linear regression of OSMF members dependent on mappers
with regression function and coefficient of determination r-squared"""
# get coeffs of linear fit
slope, intercept, r_value, p_value, std_err = stats.linregress(l_mapper_members_df['OSM Mappers'],
l_mapper_members_df['OSMF Members'])
r_squared = r_value * r_value
label = "y={0:.1f}x+{1:.1f}".format(slope, intercept)
label = label + " / rsquared:{:10.2f}".format(r_squared)
ax = sns.regplot(x='OSM Mappers', y='OSMF Members', data=l_mapper_members_df,
line_kws={'label': label})
# plot legend
ax.legend()
plt.title("OSMF Membership Regression OSMF Members Based on Mappers", fontweight='bold', fontsize=14)
filename = 'memberRegression.png'
filename = chart_location + filename
plt.savefig(filename)
if not headless:
plt.show()
def continent_history(l_members, l_data_range):
"""returns a list with number of members per continent for each months
returned list is descending sorted by number of members
input list [0] Membership Type, [1] = Start Date, [2] = End Date, [3] = Join Date
[4] = E-Mail, [5] = name, [6] = country
returns list with OSMF members in
[0] date [1] africa [2] asia [3] europe [4] north america [5] oceanian [6] south america [7] other"""
return_list = list()
africa = {"Algeria", "Angola", "Benin", "Botswana", "Burkina", "Burkina Faso", "Burundi", "Cameroon", "Cape Verde",
"Central African Republic", "Chad", "Comoros", "Congo", "Congo, The Democratic Republic of the",
"Djibouti", "Egypt", "Equatorial Guinea", "Eritrea", "Ethiopia", "Gabon", "Gambia", "Ghana", "Guinea",
"Guinea-Bissau", "Ivory Coast", "Côte d'Ivoire", "Kenya", "Lesotho", "Liberia", "Libya", "Madagascar",
"Malawi", "Mali", "Mauritania", "Mauritius", "Morocco", "Mozambique", "Namibia", "Niger", "Nigeria",
"Rwanda", "Sao Tome and Principe", "Senegal", "Seychelles", "Sierra Leone", "Somalia", "South Africa",
"South Sudan", "Sudan", "Swaziland", "Tanzania", "Togo", "Tunisia", "Uganda", "Zambia", "Zimbabwe"}
asia = {"Afghanistan", "Bahrain", "Bangladesh", "Bhutan", "Brunei", "Myanmar", "Cambodia", "China", "Hong Kong",
"East Timor", "India", "Indonesia", "Iran", "Iraq", "Israel", "Japan", "Jordan", "Kazakhstan",
"Korea, Republic of", "Kuwait", "Kyrgyzstan", "Laos", "Lebanon", "Malaysia", "Maldives", "Mongolia",
"Nepal", "Oman", "Pakistan", "Philippines", "Qatar", "Russian Federation", "Saudi Arabia", "Singapore",
"Sri Lanka", "Syria", "Tajikistan", "Thailand", "Taiwan", "Turkey", "Turkmenistan", "United Arab Emirates",
"Uzbekistan", "Vietnam", "Yemen"}
europe = {"Albania", "Andorra", "Armenia", "Austria", "Azerbaijan", "Belarus", "Belgium", "Bosnia and Herzegovina",
"Bulgaria", "Croatia", "Cyprus", "Czech Republic", "Denmark", "Estonia", "Finland", "France", "Georgia",
"Germany", "Greece", "Hungary", "Iceland", "Ireland", "Italy", "Kosovo", "Latvia", "Liechtenstein",
"Lithuania", "Luxembourg", "Macedonia", "Malta", "Moldova", "Monaco", "Montenegro", "Netherlands",
"Norway", "Poland", "Portugal", "Romania", "San Marino", "Serbia", "Slovakia", "Slovenia", "Spain",
"Sweden", "Switzerland", "Ukraine", "United Kingdom", "Vatican City"}
north_am = {"Antigua and Barbuda", "Bahamas", "Barbados", "Belize", "Canada", "Costa Rica", "Cuba", "Dominica",
"Dominican Republic", "El Salvador", "Grenada", "Guadeloupe", "Guatemala", "Haiti", "Honduras",
"Jamaica", "Mexico", "Nicaragua", "Panama", "Puerto Rico", "Saint Kitts and Nevis", "Saint Lucia",
"Saint Vincent and the Grenadines", "Trinidad and Tobago", "United States"}
oceania = {"Australia", "Fiji", "French Polynesia", "Kiribati", "Marshall Islands", "Micronesia", "Nauru",
"New Zealand", "Palau", "Papua New Guinea", "Samoa", "Solomon Islands", "Tonga", "Tuvalu", "Vanuatu"}
south_am = {"Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador", "Guyana", "Paraguay", "Peru",
"Suriname", "Uruguay", "Venezuela"}
for i in range(0, l_data_range):
countries = dict()
by_cont = [0] * 7
if logic == 'member':
d1 = datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1)
d2 = datetime.datetime(2015 + int(i / 12), i % 12 + 1, 1)
else:
d1 = datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1)
d2 = datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1)
for m in l_members:
tester = m[4] + m[5]
if m[0] in ['Normal Member', 'Associate Member', 'Fee-waiver Member'] and m[1] and m[1] < d1 and d2 < m[2] \
and tester not in countries.get(m[6], []):
countries[m[6]] = countries.get(m[6], set())
countries[m[6]].add(tester)
if not m[6]:
m[6] = 'unknown'
for country in countries:
if country in africa:
by_cont[0] += len(countries[country])
elif country in asia:
by_cont[1] += len(countries[country])
elif country in europe:
by_cont[2] += len(countries[country])
elif country in north_am:
by_cont[3] += len(countries[country])
elif country in oceania:
by_cont[4] += len(countries[country])
elif country in south_am:
by_cont[5] += len(countries[country])
else:
by_cont[6] += len(countries[country])
return_list.append([datetime.datetime(2016 + int(i / 12), i % 12 + 1, 1), by_cont[0], by_cont[1], by_cont[2],
by_cont[3], by_cont[4], by_cont[5], by_cont[6]])
return return_list
if __name__ == '__main__':
# Prepare data
# Read data from CiviCRM, export there with
# Reports -> All Reports -> Complete list of members active and non-active -> add Country to selection
# Actions -> Export as CSV
with open(input_file_location, encoding="utf8") as csvfile:
spamreader = list(csv.reader(csvfile, delimiter=',', quotechar='"', skipinitialspace=True))
# convert the csv file to a list of lists
# [0] Membership Type, [1] = Start Date, [2] = End Date, [3] = Join Date
# [4] = E-Mail, [5] = name, [6] = country
members = make_neat(spamreader)
# list with numbers for each member category for each month
# returns list with
# [0] date [1] No of normal Members [2] No of Associate Members,
# [3] No of Fee Waiver Member [4] No of Corporate Member
history = by_months(members, data_range)
# creates dataframe with the of by_months ^^
columns = 'date', 'normalMember', 'associateMember', 'feeWaiverMember', 'corporateMember'
history_df = pd.DataFrame(history, columns=columns)
# set date as index
history_df = history_df.set_index(history_df.columns[0])
# drop the column that holds the date as we have set it as index
history_df = history_df.iloc[1:]
# generate data for the time before CiviCRM
# load file and make a dataframe out of it
precivic_history_df = pd.read_excel(history_file_location)
# set date column as index to prepare merger with CiviCRM data
precivic_history_df = precivic_history_df.set_index(precivic_history_df.columns[0])
# drop the column that holds the date as we have set it as index
precivic_history_df = precivic_history_df.iloc[1:]
# combinde the two dataframes i.e. from CiviCRM and from the Excel file loaded earlier
total_history_df = pd.concat([history_df, precivic_history_df], sort=True)
total_history_df.sort_index(inplace=True)
# replace zeros with nan
total_history_df.replace(0, np.nan, inplace=True)
# calcuate members by continent
by_continent = continent_history(members, data_range)
# create dataframe with the results
columns = 'date', 'Africa', 'Asia', 'Europe', 'North America', 'South America', 'Oceania', 'unknown'
history_bycontinent_df = pd.DataFrame(by_continent, columns=columns)
# set date as index
history_bycontinent_df = history_bycontinent_df.set_index(history_bycontinent_df.columns[0])
# drop the column that holds the date as we have set it as index
history_bycontinent_df = history_bycontinent_df.iloc[1:]
# calculate members by country for last period
members_by_country = by_country(members, data_range)
# generate and save charts, print charts if headless != True
# bar chart with OSMF members and mappers by country
mapper_members_df = bar_print_by_country(members_by_country, data_range, mappers_file)
# OSMF members per member type by month - line and stacked area chart
print_member_history_chart(total_history_df)
# OSMF members per continent by month - line and stacked area chart
print_by_continent(history_bycontinent_df)
# Pie chart with members per country
pie_print_by_country(members_by_country, data_range)
# Print data to console
#
print(history_bycontinent_df)
print(total_history_df)
print('Members ex Corp by coountry at ',
datetime.datetime(2016 + int((data_range - 1) / 12), (data_range - 1) % 12 + 1, 1))
for line in members_by_country:
print(line[1], line[0])
mapper_member_regression(mapper_members_df)