-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathindexers.py
249 lines (203 loc) · 8.45 KB
/
indexers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Credit : facebookresearch/DPR
"""
FAISS-based index components for dense retriever
"""
import faiss
import logging
import numpy as np
import os
import pickle
from typing import List, Tuple
logger = logging.getLogger()
class DenseIndexer(object):
def __init__(self, buffer_size: int = 50000):
self.buffer_size = buffer_size
self.index_id_to_db_id = []
self.index = None
def init_index(self, vector_sz: int):
raise NotImplementedError
def index_data(self, data: List[Tuple[object, np.array]]):
raise NotImplementedError
def get_index_name(self):
raise NotImplementedError
def search_knn(
self, query_vectors: np.array, top_docs: int
) -> List[Tuple[List[object], List[float]]]:
raise NotImplementedError
def serialize(self, file: str):
logger.info("Serializing index to %s", file)
if os.path.isdir(file):
index_file = os.path.join(file, "index.dpr")
meta_file = os.path.join(file, "index_meta.dpr")
else:
index_file = file + ".index.dpr"
meta_file = file + ".index_meta.dpr"
faiss.write_index(self.index, index_file)
with open(meta_file, mode="wb") as f:
pickle.dump(self.index_id_to_db_id, f)
def get_files(self, path: str):
if os.path.isdir(path):
index_file = os.path.join(path, "index.dpr")
meta_file = os.path.join(path, "index_meta.dpr")
else:
index_file = path + ".{}.dpr".format(self.get_index_name())
meta_file = path + ".{}_meta.dpr".format(self.get_index_name())
return index_file, meta_file
def index_exists(self, path: str):
index_file, meta_file = self.get_files(path)
return os.path.isfile(index_file) and os.path.isfile(meta_file)
def deserialize(self, path: str):
logger.info("Loading index from %s", path)
index_file, meta_file = self.get_files(path)
self.index = faiss.read_index(index_file)
logger.info(
"Loaded index of type %s and size %d", type(self.index), self.index.ntotal
)
with open(meta_file, "rb") as reader:
self.index_id_to_db_id = pickle.load(reader)
assert (
len(self.index_id_to_db_id) == self.index.ntotal
), "Deserialized index_id_to_db_id should match faiss index size"
def _update_id_mapping(self, db_ids: List) -> int:
self.index_id_to_db_id.extend(db_ids)
return len(self.index_id_to_db_id)
class DenseFlatIndexer(DenseIndexer):
def __init__(self, buffer_size: int = 50000):
super(DenseFlatIndexer, self).__init__(buffer_size=buffer_size)
def init_index(self, vector_sz: int):
self.index = faiss.IndexFlatIP(vector_sz)
def index_data(self, data: List[Tuple[object, np.array]]):
n = len(data)
# indexing in batches is beneficial for many faiss index types
for i in range(0, n, self.buffer_size):
db_ids = [t[0] for t in data[i : i + self.buffer_size]]
vectors = [
np.reshape(t[1], (1, -1)) for t in data[i : i + self.buffer_size]
]
vectors = np.concatenate(vectors, axis=0)
total_data = self._update_id_mapping(db_ids)
self.index.add(vectors)
logger.info("data indexed %d", total_data)
indexed_cnt = len(self.index_id_to_db_id)
logger.info("Total data indexed %d", indexed_cnt)
def search_knn(
self, query_vectors: np.array, top_docs: int
) -> List[Tuple[List[object], List[float]]]:
scores, indexes = self.index.search(query_vectors, top_docs)
# convert to external ids
db_ids = [
[self.index_id_to_db_id[i] for i in query_top_idxs]
for query_top_idxs in indexes
]
result = [(db_ids[i], scores[i]) for i in range(len(db_ids))]
return result
def get_index_name(self):
return "flat_index"
class DenseHNSWFlatIndexer(DenseIndexer):
"""
Efficient index for retrieval. Note: default settings are for hugh accuracy but also high RAM usage
"""
def __init__(
self,
buffer_size: int = 1e9,
store_n: int = 512,
ef_search: int = 128,
ef_construction: int = 200,
):
super(DenseHNSWFlatIndexer, self).__init__(buffer_size=buffer_size)
self.store_n = store_n
self.ef_search = ef_search
self.ef_construction = ef_construction
self.phi = 0
def init_index(self, vector_sz: int):
# IndexHNSWFlat supports L2 similarity only
# so we have to apply DOT -> L2 similairy space conversion with the help of an extra dimension
index = faiss.IndexHNSWFlat(vector_sz + 1, self.store_n)
index.hnsw.efSearch = self.ef_search
index.hnsw.efConstruction = self.ef_construction
self.index = index
def index_data(self, data: List[Tuple[object, np.array]]):
n = len(data)
# max norm is required before putting all vectors in the index to convert inner product similarity to L2
if self.phi > 0:
raise RuntimeError(
"DPR HNSWF index needs to index all data at once,"
"results will be unpredictable otherwise."
)
phi = 0
for i, item in enumerate(data):
id, doc_vector = item[0:2]
norms = (doc_vector**2).sum()
phi = max(phi, norms)
logger.info("HNSWF DotProduct -> L2 space phi={}".format(phi))
self.phi = phi
# indexing in batches is beneficial for many faiss index types
bs = int(self.buffer_size)
for i in range(0, n, bs):
db_ids = [t[0] for t in data[i : i + bs]]
vectors = [np.reshape(t[1], (1, -1)) for t in data[i : i + bs]]
norms = [(doc_vector**2).sum() for doc_vector in vectors]
aux_dims = [np.sqrt(phi - norm) for norm in norms]
hnsw_vectors = [
np.hstack((doc_vector, aux_dims[i].reshape(-1, 1)))
for i, doc_vector in enumerate(vectors)
]
hnsw_vectors = np.concatenate(hnsw_vectors, axis=0)
self.train(hnsw_vectors)
self._update_id_mapping(db_ids)
self.index.add(hnsw_vectors)
logger.info("data indexed %d", len(self.index_id_to_db_id))
indexed_cnt = len(self.index_id_to_db_id)
logger.info("Total data indexed %d", indexed_cnt)
def train(self, vectors: np.array):
pass
def search_knn(
self, query_vectors: np.array, top_docs: int
) -> List[Tuple[List[object], List[float]]]:
aux_dim = np.zeros(len(query_vectors), dtype="float32")
query_nhsw_vectors = np.hstack((query_vectors, aux_dim.reshape(-1, 1)))
logger.info("query_hnsw_vectors %s", query_nhsw_vectors.shape)
scores, indexes = self.index.search(query_nhsw_vectors, top_docs)
# convert to external ids
db_ids = [
[self.index_id_to_db_id[i] for i in query_top_idxs]
for query_top_idxs in indexes
]
result = [(db_ids[i], scores[i]) for i in range(len(db_ids))]
return result
def deserialize(self, file: str):
super(DenseHNSWFlatIndexer, self).deserialize(file)
# to trigger exception on subsequent indexing
self.phi = 1
def get_index_name(self):
return "hnsw_index"
class DenseHNSWSQIndexer(DenseHNSWFlatIndexer):
"""
Efficient index for retrieval. Note: default settings are for hugh accuracy but also high RAM usage
"""
def __init__(
self,
buffer_size: int = 1e10,
store_n: int = 128,
ef_search: int = 128,
ef_construction: int = 200,
):
super(DenseHNSWSQIndexer, self).__init__(
buffer_size=buffer_size,
store_n=store_n,
ef_search=ef_search,
ef_construction=ef_construction,
)
def init_index(self, vector_sz: int):
# IndexHNSWFlat supports L2 similarity only
# so we have to apply DOT -> L2 similairy space conversion with the help of an extra dimension
index = faiss.IndexHNSWSQ(
vector_sz + 1, faiss.ScalarQuantizer.QT_8bit, self.store_n
)
index.hnsw.efSearch = self.ef_search
index.hnsw.efConstruction = self.ef_construction
self.index = index
def train(self, vectors: np.array):
self.index.train(vectors)
def get_index_name(self):
return "hnswsq_index"