forked from KeikoFujii0823/hill_tononi_synthesis
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspike_generator_example.py
114 lines (87 loc) · 3.07 KB
/
spike_generator_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import nest
import nest.topology as topo
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import nsdm_run_params as rp
# ====================
# Load an image
# ====================
# Load an image, and convert from RGB to gray
test_img_tmp = Image.open(rp.input_figure).convert('L')
# Convert PIL format to numpy format
# Convert int to float
# Reshape to a row vector
test_img = np.array(test_img_tmp).astype(float)
N = len(test_img)
input_img = test_img.reshape(1, N*N)[0]
# ====================
# Set nest kernel
# ====================
nest.ResetKernel()
nest.SetKernelStatus({"local_num_threads": 16})
nest.SetStatus([0],{'print_time': True})
# ======================
# Create retina layer
# ======================
nest.CopyModel('ht_neuron', 'RetinaNode',
params={"Theta_eq": -51.0,
"Tau_theta": 2.0,
"spike_duration": 2.0,
"Tau_spike": 1.75,
"Tau_m": 16.0} )
layerProps = {'rows': N,
'columns': N,
'elements': 'RetinaNode'}
retina = topo.CreateLayer(layerProps)
# ==============================
# Connect recorder & detector
# ==============================
recorder = nest.Create('multimeter',
params={'interval': 0.1,
'record_from': ['V_m', 'spike_input_AMPA']})
detector = nest.Create('spike_detector',
params={"withgid": True, "withtime": True})
tgts = nest.GetLeaves(retina)[0]
nest.Connect(recorder, tgts)
#nest.Connect(tgts, detector)
# ===========================
# Connect spike generators
# ===========================
#dcg = nest.Create('dc_generator')
# Create spike_generator for all retina neurons
sg = nest.Create('spike_generator', N*N)
nest.Connect(sg, detector)
# Connect using AMPA synapses
receptors = nest.GetDefaults('ht_neuron')['receptor_types']
w = 20.0
for i in range(0, N*N, 1):
nest.Connect([sg[i]], [tgts[i]], syn_spec={'receptor_type': receptors['AMPA'], 'weight': w})
# ==============================
# Simulation
# ==============================
# if the intensity of pixel is smaller than 'intensity_threshold',
# set spike_generator ON
# In this simulation, retina receives spikes only when t = 100 ms
# TODO check spike timing (=nest.GetStatus(detector)[0]['events']['times']). This should be 101 (but 105.5 and 112.6)
t_end = 500 # int
sim_interval = 1 # int
intensity_threshold = 200.0
# Set duration (float value)
# Without duration, the network didn't have any spike
interval = np.int(t_end/sim_interval)
l = np.random.poisson(100, N*N)
for i in range(0, N*N, 1):
if input_img[i] < intensity_threshold:
t = np.random.randint(1, t_end, l[i])
t.sort()
nest.SetStatus([sg[i]], {'spike_times': t.astype(float).tolist()})
nest.Simulate(t_end)
spikes = nest.GetStatus(detector, "events")[0]
screen_time = np.zeros((1600,500))
screen_time[spikes['senders']-min(sg), spikes['times'].astype(np.int)] = 1
screen = np.mean(screen_time, 1)
s = screen.reshape((40,40))
plt.imshow(s)
plt.colorbar()
print('end')