-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_metrics.py
228 lines (186 loc) · 8.9 KB
/
eval_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from __future__ import print_function, absolute_import
import numpy as np
"""Cross-Modality ReID"""
import pdb
def eval_sysu(distmat, q_pids, g_pids, q_camids, g_camids, max_rank = 20):
"""Evaluation with sysu metric
Key: for each query identity, its gallery images from the same camera view are discarded. "Following the original setting in ite dataset"
"""
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
pred_label = g_pids[indices]
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
new_all_cmc = []
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (q_camid == 3) & (g_camids[order] == 2)
keep = np.invert(remove)
# compute cmc curve
# the cmc calculation is different from standard protocol
# we follow the protocol of the author's released code
new_cmc = pred_label[q_idx][keep]
new_index = np.unique(new_cmc, return_index=True)[1]
new_cmc = [new_cmc[index] for index in sorted(new_index)]
new_match = (new_cmc == q_pid).astype(np.int32)
new_cmc = new_match.cumsum()
new_all_cmc.append(new_cmc[:max_rank])
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
# compute mINP
# refernece Deep Learning for Person Re-identification: A Survey and Outlook
pos_idx = np.where(orig_cmc == 1)
pos_max_idx = np.max(pos_idx)
inp = cmc[pos_max_idx]/ (pos_max_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q # standard CMC
new_all_cmc = np.asarray(new_all_cmc).astype(np.float32)
new_all_cmc = new_all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
return new_all_cmc, mAP, mINP
def eval_nwpu(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=20): # 相似度
# -distmat_att, query_label, gall_label, query_cam, gall_cam
"""Evaluation with nwpu metric
Key: for each query identity, its gallery images from the same camera view are discarded. "Following the original setting in ite dataset"
"""
num_q, num_g = distmat.shape # 相似度矩阵的行列分别代表query数量和gallery数量 num_q=3851 num_g=240
if num_g < max_rank: # 因为排名取前20,所以如果gallery如果小于20就太少了
max_rank = num_g # 太少了,那就只好让max_rank和gallery一样了
print("Note: number of gallery samples is quite small, got {}".format(num_g)) # 输出告诉你gallery太小了,多分配点
indices = np.argsort(distmat, axis=1) # 将x中的元素从大到小排列,提取其对应的index(索引),即相似度排名
pred_label = g_pids[indices] # 预测的标签,这里将返回
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # 匹配的的位置变成1
# compute cmc curve for each query
new_all_cmc = []
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0. # number of valid(有效的) query
for q_idx in range(num_q): # num_q= 3851
# get query pid and camid
q_pid = q_pids[q_idx] # 提取单个query的ID号
q_camid = q_camids[q_idx] # 提取对应query的cam号
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (q_camid == 10) & (g_camids[order] == 11) # & 按位与 判断是否需要remove 返回0或1
# sysu中摄像机3和2在同一位置,所以希望摄像机3的query能跳过摄像机2的gallery,但我们没这个问题
keep = np.invert(remove)
# compute cmc curve
# the cmc calculation is different from standard protocol
# we follow the protocol of the author's released code
new_cmc = pred_label[q_idx][keep]
new_index = np.unique(new_cmc, return_index=True)[1]
new_cmc = [new_cmc[index] for index in sorted(new_index)]
new_match = (new_cmc == q_pid).astype(np.int32)
new_cmc = new_match.cumsum()
new_all_cmc.append(new_cmc[:max_rank])
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
# compute mINP
# refernece Deep Learning for Person Re-identification: A Survey and Outlook
pos_idx = np.where(orig_cmc == 1)
pos_max_idx = np.max(pos_idx)
inp = cmc[pos_max_idx] / (pos_max_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q # standard CMC
new_all_cmc = np.asarray(new_all_cmc).astype(np.float32)
new_all_cmc = new_all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
return new_all_cmc, mAP, mINP
def eval_regdb(distmat, q_pids, g_pids, max_rank = 20):
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0. # number of valid query
# only two cameras
q_camids = np.ones(num_q).astype(np.int32)
g_camids = 2* np.ones(num_g).astype(np.int32)
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
raw_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(raw_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = raw_cmc.cumsum()
# compute mINP
# refernece Deep Learning for Person Re-identification: A Survey and Outlook
pos_idx = np.where(raw_cmc == 1)
pos_max_idx = np.max(pos_idx)
inp = cmc[pos_max_idx]/ (pos_max_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = raw_cmc.sum()
tmp_cmc = raw_cmc.cumsum()
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
return all_cmc, mAP, mINP