forked from gekkehenker/fire
-
Notifications
You must be signed in to change notification settings - Fork 2
/
endgame.cpp
207 lines (163 loc) · 6.56 KB
/
endgame.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
Fire is a freeware UCI chess playing engine authored by Norman Schmidt.
Fire utilizes many state-of-the-art chess programming ideas and techniques
which have been documented in detail at https://www.chessprogramming.org/
and demonstrated via the very strong open-source chess engine Stockfish...
https://github.com/official-stockfish/Stockfish.
Fire is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.
You should have received a copy of the GNU General Public License with
this program: copying.txt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "bitboard.h"
#include "endgame.h"
#include "fire.h"
#include "movegen.h"
#include "pragma.h"
#include "thread.h"
namespace zobrist
{
extern uint64_t psq[num_pieces][num_squares];
}
namespace endgame
{
square normalize_pawn_side(const position& pos, const side strong_side, square sq)
{
assert(pos.number(strong_side, pt_pawn) == 1);
if (file_of(pos.piece_square(strong_side, pt_pawn)) >= file_e)
sq = static_cast<square>(sq ^ 7);
if (strong_side == black)
sq = ~sq;
return sq;
}
// read char string position representation of endgame, then calculate and return
// a unique material key via binary XOR of position's piece square table values
uint64_t material_key(const side color, const char* pieces)
{
uint64_t material_key = 0;
for (auto piece = pt_king; piece <= pt_queen; ++piece)
{
auto number = pieces[piece] - '0';
for (auto cnt = 0; cnt < number; ++cnt)
material_key ^= zobrist::psq[make_piece(color, piece)][cnt];
number = pieces[piece + 8] - '0';
for (auto cnt = 0; cnt < number; ++cnt)
material_key ^= zobrist::psq[make_piece(~color, piece)][cnt];
}
return material_key;
}
uint64_t attack_king_inc(const square s)
{
return empty_attack[pt_king][s] | s;
}
}
endgames::endgames() = default;
void endgames::add_scale_factor(const char* pieces, const endgame_scale_factor f_w, const endgame_scale_factor f_b)
{
map_scale_factor_[endgame::material_key(white, pieces)] = factor_number_;
factor_functions[factor_number_++] = f_w;
map_scale_factor_[endgame::material_key(black, pieces) ^ black_modifier] = factor_number_;
factor_functions[factor_number_++] = f_b;
}
void endgames::add_value(const char* pieces, const endgame_value f_w, const endgame_value f_b)
{
map_value_[endgame::material_key(white, pieces)] = value_number_;
value_functions[value_number_++] = f_w;
map_value_[endgame::material_key(black, pieces)] = value_number_;
value_functions[value_number_++] = f_b;
}
// king and pawn vs lone king
// probes the king and pawn vs king table (see kpk.cpp)
template <side strong>
int endgame_kpk(const position & pos)
{
const auto weak = ~strong;
const auto strong_k = endgame::normalize_pawn_side(pos, strong, pos.king(strong));
const auto weak_k = endgame::normalize_pawn_side(pos, strong, pos.king(weak));
const auto pawn = endgame::normalize_pawn_side(pos, strong, pos.piece_square(strong, pt_pawn));
if (const auto me = strong == pos.on_move() ? white : black; !kpk::probe(strong_k, pawn, weak_k, me))
{
pos.info()->eval_is_exact = true;
return draw_score;
}
const auto result = win_score + 40 * static_cast<int>(rank_of(pawn));
return strong == pos.on_move() ? result : -result;
}
// king & queen vs king & rook
template <side strong>
int endgame_kqkr(const position & pos)
{
const auto weak = ~strong;
const auto strong_k = pos.king(strong);
const auto weak_k = pos.king(weak);
const auto result = 4 * value_pawn
+ endgame::push_to_side[weak_k]
+ endgame::draw_closer[distance(strong_k, weak_k)];
return strong == pos.on_move() ? result : -result;
}
// king and mating material vs lone king
template <side strong>
int endgame_kxk(const position & pos)
{
if (pos.is_in_check())
return score_0;
const auto weak = ~strong;
if (pos.on_move() == weak && !at_least_one_legal_move(pos))
return draw_score;
const auto strong_k = pos.king(strong);
const auto weak_k = pos.king(weak);
auto result = value_of_material(pos.non_pawn_material(strong))
+ pos.number(strong, pt_pawn) * value_pawn
+ endgame::push_to_side[weak_k]
+ endgame::draw_closer[distance(strong_k, weak_k)];
if (result < win_score)
if (pos.number(strong, pt_queen) + pos.number(strong, pt_rook)
|| pos.number(strong, pt_bishop) && pos.number(strong, pt_knight)
|| pos.pieces(strong, pt_bishop) & dark_squares && pos.pieces(strong, pt_bishop) & ~dark_squares)
result += win_score;
return strong == pos.on_move() ? result : -result;
}
template int endgame_kxk<white>(const position & pos);
template int endgame_kxk<black>(const position & pos);
// we use text strings that resemble binary numbers to represent the pieces for each side in a position
// the number order corresponds with non-enumerated piece type values listed in fire.h
// for ex: 0110000 0100000 = white king & pawn vs black king (0, king, pawn, knight, bishop, rook, queen)
// process these strings with add_value() and material_key()
void endgames::init_endgames()
{
if (!map_value_.empty())
return;
value_number_ = factor_number_ = 0;
value_functions[value_number_++] = &endgame_kxk<white>;
value_functions[value_number_++] = &endgame_kxk<black>;
add_value("0110000 0100000", &endgame_kpk<white>, &endgame_kpk<black>);
add_value("0100001 0100010", &endgame_kqkr<white>, &endgame_kqkr<black>);
factor_functions[factor_number_++] = &endgame_kbpk<white>;
factor_functions[factor_number_++] = &endgame_kbpk<black>;
factor_functions[factor_number_++] = &endgame_kpk<white>;
factor_functions[factor_number_++] = &endgame_kpk<black>;
factor_functions[factor_number_++] = &endgame_kpkp<white>;
factor_functions[factor_number_++] = &endgame_kpkp<black>;
factor_functions[factor_number_++] = &endgame_kqkrp<white>;
factor_functions[factor_number_++] = &endgame_kqkrp<black>;
}
int endgames::probe_scale_factor(const uint64_t key, side & strong_side)
{
function_index_map::const_iterator iteration = map_scale_factor_.find(key);
if (iteration != map_scale_factor_.end())
return strong_side = white, iteration->second;
iteration = map_scale_factor_.find(key ^ black_modifier);
if (iteration != map_scale_factor_.end())
return strong_side = black, iteration->second;
return -1;
}
int endgames::probe_value(const uint64_t key)
{
const function_index_map::const_iterator iteration = map_value_.find(key);
return iteration == map_value_.end() ? -1 : iteration->second;
}
inline int value_of_material(const int val)
{
return 16 * static_cast<int>(val);
}