-
Notifications
You must be signed in to change notification settings - Fork 24
/
face_detector.py
104 lines (83 loc) · 4.02 KB
/
face_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import cv2
import argparse
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn.functional as F
from entity import params
from models.FaceNet import FaceNet
class FaceDetector(object):
def __init__(self, weights_file):
print('Loading FaceNet...')
self.model = FaceNet()
self.model.load_state_dict(torch.load(weights_file))
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = self.model.to(self.device)
def detect(self, face_img, fast_mode=False):
face_img_h, face_img_w, _ = face_img.shape
resized_image = cv2.resize(face_img, (params["face_inference_img_size"], params["face_inference_img_size"]))
x_data = np.array(resized_image[np.newaxis], dtype=np.float32).transpose(0, 3, 1, 2) / 256 - 0.5
x_data = torch.tensor(x_data).to(self.device)
x_data.requires_grad = False
with torch.no_grad():
hs = self.model(x_data)
heatmaps = F.interpolate(hs[-1], (face_img_h, face_img_w), mode='bilinear', align_corners=True).cpu().numpy()[0]
keypoints = self.compute_peaks_from_heatmaps(heatmaps)
return keypoints
def compute_peaks_from_heatmaps(self, heatmaps):
keypoints = []
for i in range(heatmaps.shape[0] - 1):
heatmap = gaussian_filter(heatmaps[i], sigma=params['gaussian_sigma'])
max_value = heatmap.max()
if max_value > params['face_heatmap_peak_thresh']:
coords = np.array(np.where(heatmap==max_value)).flatten().tolist()
keypoints.append([coords[1], coords[0], max_value]) # x, y, conf
else:
keypoints.append(None)
return keypoints
def draw_face_keypoints(orig_img, face_keypoints, left_top):
orig_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)
img = orig_img.copy()
left, top = left_top
for keypoint in face_keypoints:
if keypoint:
x, y, conf = keypoint
cv2.circle(img, (x + left, y + top), 2, (255, 255, 0), -1)
for face_line_index in params["face_line_indices"]:
keypoint_from = face_keypoints[face_line_index[0]]
keypoint_to = face_keypoints[face_line_index[1]]
if keypoint_from and keypoint_to:
keypoint_from_x, keypoint_from_y, _ = keypoint_from
keypoint_to_x, keypoint_to_y, _ = keypoint_to
cv2.line(img, (keypoint_from_x + left, keypoint_from_y + top), (keypoint_to_x + left, keypoint_to_y + top), (255, 255, 0), 1)
return img
def crop_face(img, rect):
orig_img_h, orig_img_w, _ = img.shape
crop_center_x = rect[0] + rect[2] / 2
crop_center_y = rect[1] + rect[3] / 2
crop_width = rect[2] * params['face_crop_scale']
crop_height = rect[3] * params['face_crop_scale']
crop_left = max(0, int(crop_center_x - crop_width / 2))
crop_top = max(0, int(crop_center_y - crop_height / 2))
crop_right = min(orig_img_w-1, int(crop_center_x + crop_width / 2))
crop_bottom = min(orig_img_h-1, int(crop_center_y + crop_height / 2))
cropped_face = img[crop_top:crop_bottom, crop_left:crop_right]
max_edge_len = np.max(cropped_face.shape[:-1])
padded_face = np.zeros((max_edge_len, max_edge_len, cropped_face.shape[-1]), dtype=np.uint8)
padded_face[0:cropped_face.shape[0], 0:cropped_face.shape[1]] = cropped_face
return padded_face, (crop_left, crop_top)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Face detector')
parser.add_argument('weights', help='weights file path')
parser.add_argument('--img', '-i', help='image file path')
args = parser.parse_args()
# load model
face_detector = FaceDetector(args.weights)
# read image
img = cv2.imread(args.img)
# inference
face_keypoints = face_detector.detect(img)
# draw and save image
img = draw_face_keypoints(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face_keypoints, (0, 0))
print('Saving result into result.png...')
cv2.imwrite('result.png', img)