-
Notifications
You must be signed in to change notification settings - Fork 8
/
train.py
executable file
·213 lines (176 loc) · 7.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# -*- coding: utf-8 -*-
import numpy as np
import scipy.sparse as sp
import torch
import random
import argparse
import os
import warnings
warnings.filterwarnings("ignore")
from utils import process
from utils import aug
from modules.gcn import GCNLayer
from net.merit import MERIT
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
def str_to_bool(value):
if isinstance(value, bool):
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise ValueError(f'{value} is not a valid boolean value')
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--seed', type=int, default=2021)
parser.add_argument('--data', type=str, default='citeseer')
parser.add_argument('--runs', type=int, default=1)
parser.add_argument('--eval_every', type=int, default=10)
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--sample_size', type=int, default=2000)
parser.add_argument('--patience', type=int, default=100)
parser.add_argument('--sparse', type=str_to_bool, default=True)
parser.add_argument('--input_dim', type=int, default=3703)
parser.add_argument('--gnn_dim', type=int, default=512)
parser.add_argument('--proj_dim', type=int, default=512)
parser.add_argument('--proj_hid', type=int, default=4096)
parser.add_argument('--pred_dim', type=int, default=512)
parser.add_argument('--pred_hid', type=int, default=4096)
parser.add_argument('--momentum', type=float, default=0.8)
parser.add_argument('--beta', type=float, default=0.6)
parser.add_argument('--alpha', type=float, default=0.05)
parser.add_argument('--drop_edge', type=float, default=0.4)
parser.add_argument('--drop_feat1', type=float, default=0.4)
parser.add_argument('--drop_feat2', type=float, default=0.4)
args = parser.parse_args()
torch.set_num_threads(4)
def evaluation(adj, diff, feat, gnn, idx_train, idx_test, sparse):
clf = LogisticRegression(random_state=0, max_iter=2000)
model = GCNLayer(input_size, gnn_output_size) # 1-layer
model.load_state_dict(gnn.state_dict())
with torch.no_grad():
embeds1 = model(feat, adj, sparse)
embeds2 = model(feat, diff, sparse)
train_embs = embeds1[0, idx_train] + embeds2[0, idx_train]
test_embs = embeds1[0, idx_test] + embeds2[0, idx_test]
train_labels = torch.argmax(labels[0, idx_train], dim=1)
test_labels = torch.argmax(labels[0, idx_test], dim=1)
clf.fit(train_embs, train_labels)
pred_test_labels = clf.predict(test_embs)
return accuracy_score(test_labels, pred_test_labels)
if __name__ == '__main__':
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
n_runs = args.runs
eval_every_epoch = args.eval_every
dataset = args.data
input_size = args.input_dim
gnn_output_size = args.gnn_dim
projection_size = args.proj_dim
projection_hidden_size = args.proj_hid
prediction_size = args.pred_dim
prediction_hidden_size = args.pred_hid
momentum = args.momentum
beta = args.beta
alpha = args.alpha
drop_edge_rate_1 = args.drop_edge
drop_feature_rate_1 = args.drop_feat1
drop_feature_rate_2 = args.drop_feat2
epochs = args.epochs
lr = args.lr
weight_decay = args.weight_decay
sample_size = args.sample_size
batch_size = args.batch_size
patience = args.patience
sparse = args.sparse
# Loading dataset
adj, features, labels, idx_train, idx_val, idx_test = process.load_data(dataset)
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
if os.path.exists('data/diff_{}_{}.npy'.format(dataset, alpha)):
diff = np.load('data/diff_{}_{}.npy'.format(dataset, alpha), allow_pickle=True)
else:
diff = aug.gdc(adj, alpha=alpha, eps=0.0001)
np.save('data/diff_{}_{}'.format(dataset, alpha), diff)
features, _ = process.preprocess_features(features)
nb_nodes = features.shape[0]
ft_size = features.shape[1]
nb_classes = labels.shape[1]
features = torch.FloatTensor(features[np.newaxis])
labels = torch.FloatTensor(labels[np.newaxis])
norm_adj = process.normalize_adj(adj + sp.eye(adj.shape[0]))
norm_diff = sp.csr_matrix(diff)
if sparse:
eval_adj = process.sparse_mx_to_torch_sparse_tensor(norm_adj)
eval_diff = process.sparse_mx_to_torch_sparse_tensor(norm_diff)
else:
eval_adj = (norm_adj + sp.eye(norm_adj.shape[0])).todense()
eval_diff = (norm_diff + sp.eye(norm_diff.shape[0])).todense()
eval_adj = torch.FloatTensor(eval_adj[np.newaxis])
eval_diff = torch.FloatTensor(eval_diff[np.newaxis])
result_over_runs = []
# Initiate models
model = GCNLayer(input_size, gnn_output_size)
merit = MERIT(gnn=model,
feat_size=input_size,
projection_size=projection_size,
projection_hidden_size=projection_hidden_size,
prediction_size=prediction_size,
prediction_hidden_size=prediction_hidden_size,
moving_average_decay=momentum, beta=beta).to(device)
opt = torch.optim.Adam(merit.parameters(), lr=lr, weight_decay=weight_decay)
results = []
# Training
best = 0
patience_count = 0
for epoch in range(epochs):
for _ in range(batch_size):
idx = np.random.randint(0, adj.shape[-1] - sample_size + 1)
ba = adj[idx: idx + sample_size, idx: idx + sample_size]
bd = diff[idx: idx + sample_size, idx: idx + sample_size]
bd = sp.csr_matrix(np.matrix(bd))
features = features.squeeze(0)
bf = features[idx: idx + sample_size]
aug_adj1 = aug.aug_random_edge(ba, drop_percent=drop_edge_rate_1)
aug_adj2 = bd
aug_features1 = aug.aug_feature_dropout(bf, drop_percent=drop_feature_rate_1)
aug_features2 = aug.aug_feature_dropout(bf, drop_percent=drop_feature_rate_2)
aug_adj1 = process.normalize_adj(aug_adj1 + sp.eye(aug_adj1.shape[0]))
aug_adj2 = process.normalize_adj(aug_adj2 + sp.eye(aug_adj2.shape[0]))
if sparse:
adj_1 = process.sparse_mx_to_torch_sparse_tensor(aug_adj1).to(device)
adj_2 = process.sparse_mx_to_torch_sparse_tensor(aug_adj2).to(device)
else:
aug_adj1 = (aug_adj1 + sp.eye(aug_adj1.shape[0])).todense()
aug_adj2 = (aug_adj2 + sp.eye(aug_adj2.shape[0])).todense()
adj_1 = torch.FloatTensor(aug_adj1[np.newaxis]).to(device)
adj_2 = torch.FloatTensor(aug_adj2[np.newaxis]).to(device)
aug_features1 = aug_features1.to(device)
aug_features2 = aug_features2.to(device)
opt.zero_grad()
loss = merit(adj_1, adj_2, aug_features1, aug_features2, sparse)
loss.backward()
opt.step()
merit.update_ma()
if epoch % eval_every_epoch == 0:
acc = evaluation(eval_adj, eval_diff, features, model, idx_train, idx_test, sparse)
if acc > best:
best = acc
patience_count = 0
else:
patience_count += 1
results.append(acc)
print('\t epoch {:03d} | loss {:.5f} | clf test acc {:.5f}'.format(epoch, loss.item(), acc))
if patience_count >= patience:
print('Early Stopping.')
break
result_over_runs.append(max(results))
print('\t best acc {:.5f}'.format(max(results)))