Skip to content

TungPhamDuy/disaster-response-pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Disaster Response Pipeline Project

Project Overview

This project is part of the Udacity Data Scientist Nanodegree. This project tackles the challenge of classifying disaster messages. By training a Natural Language Processing model on real disaster data, it empowers responders to quickly understand the nature of incoming messages and react effectively.

Files in the repository

+---app
|  \---templates
|          <> go.html
|          <> master.html
+---data
|          categories.csv
|          DisasterResponse.db
|          messages.csv
|          process_data.py
+---images
|          classified_message.png
|          homepage.png
|          visualizations.png 
\---models
|          train_classifier.py
|---README.md
|---requirements.txt

Installation

Install the necessary libraries

pip install -r requirements.txt

Instructions:

  1. Run the following commands in the project's root directory to set up your database and model.
  • To run ETL pipeline that cleans data and stores in database:

python data/process_data.py data/messages.csv data/categories.csv data/DisasterResponse.db

  • Expected output:
Loading data...
    MESSAGES: data/messages.csv
    CATEGORIES: data/categories.csv
Cleaning data...
Saving data...
    DATABASE: data/DisasterResponse.db
Cleaned data saved to database!
  • To run ML pipeline that trains classifier and saves:

python models/train_classifier.py data/DisasterResponse.db models/classifier.pkl

  • Expected output:
Best parameter...
{'clf__estimator__min_samples_split': 2, 'clf__estimator__n_estimators': 20}
...
Category: direct_report
              precision    recall  f1-score   support

           0       0.85      0.98      0.91      4208
           1       0.78      0.33      0.46      1036

    accuracy                           0.85      5244
   macro avg       0.82      0.65      0.69      5244
weighted avg       0.84      0.85      0.82      5244

Accuracy: 0.8485888634630053
F1 score: 0.822509670332959
Precision: 0.8399912434285646
Recall: 0.8485888634630053
Saving model...
    MODEL: models/classifier.pkl
Trained model saved!
  1. Run your web app: python app\run.py

  2. Open http://127.0.0.1:3001/ in your web browser.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published