Skip to content

UCSB-NLP-Chang/TextGrad

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TextGrad

This is the official implementation of the paper TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization.

Requirements

The dependency packages can be found in requirements.txt file. One can use pip install -r requirements.txt to configure the environment. We use python 3.7 to run the experiments.

(Optional) Fine-tuning Language Models for Downstream Tasks

For standard training, one may use the following scripts to fine-tune a pre-trained transformer encoder model:

Model=bert    ## bert/roberta/albert
Dataset=sst   ## sst/mnli/qnli/rte/agnews
CUDA_VISIBLE_DEVICES=0 python finetuning.py --dataset $Dataset --model $Model --do_train --do_eval --learning_rate 2e-5  --evaluation_strategy epoch --num_train_epochs 3 --save_strategy epoch --save_total_limit 2  --logging_strategy epoch --output_dir ./checkpoints/finetune/$Dataset-$Model/ --load_best_model_at_end --metric_for_best_model eval_acc --disable_tqdm 0 --prediction_loss_only 0  --per_device_train_batch_size 16 --report_to wandb

For robust models, we use the official implementations from here.

Attacking a Fine-tuned Model

Use run_attack.py to attack a fine-tuned model. One may either fine-tune a model for attacking or use the online (from Huggingface) fine-tuned models. For example, to attack the BERT classifier on SST dataset using the checkpoint released by TextAttack, we can use the following scripts:

python run_attack.py --dataset sst --victim bert --model_name_or_path textattack/bert-base-uncased-SST-2 --rand --use_lm --ste --norm --iter_time 20 --cw --multi_sample --patience 10 --size 100  --modif 0.25

Explanations of the parameters:

dataset: the dataset for robustness evaluation (sst/mnli/qnli/rte/agnews) victim: indicate the type of transformer-based language models you use (bert/roberta/albert) model_name_or_path: the model name (online Huggingface models) or the path to the fine-tuned models in your local directory. rand: random initialize the variable $z$ and variable $u$ before optimization. use_lm: use masked language model loss for regularization ste: use the straight-through estimator for gradient calculation norm: normalize the gradients before the update of $z$ and $u$ iter_time: number of PGD iterations cw: use C&W attack loss instead of CE loss patience: number of allowed attack restart times. size: number of examples to attack modif: attack budget for word modification.

Similarly, to attack sentence pair classification tasks (e.g., MNLI dataset), one can use the following scripts:

python run_attack.py --dataset mnli --victim bert --model_name_or_path textattack/bert-base-uncased-MNLI --rand --use_lm --ste --norm --iter_time 20 --cw --multi_sample --patience 10 --size 100 --modif 0.25

By default, the attack log file will be saved to attack_log/textgrad_{dataset}_{victim}.pkl.

After the attack finished, one can evaluate and export the adversarial examples using the following scripts:

python evaluate.py --victim bert --dataset sst --log_path /YourPath/to/log.pkl

The command parameter log_path should be the path to the corresponding attack log file

Robust Training

To run adversarial training (AT) using TextGrad, one can use the following scripts.

python robust_training --dataset sst --victim bert --rand --use_lm --ste --norm --iter_time 5 --cw --patience 1 --multi_sample --modif 0.25

By default, the adversarial training follows the PGD-AT method. To use TRADES for adversarial training, one can add --trades in the above scripts.

Acknowledgment

Some of our experiments are based on TextAttack toolkits and the repository of TextDefender:

@inproceedings{morris2020textattack,
  title={TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP},
  author={Morris, John and Lifland, Eli and Yoo, Jin Yong and Grigsby, Jake and Jin, Di and Qi, Yanjun},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year={2020}
}

@inproceedings{li2021searching,
  title={Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution},
  author={Li, Zongyi and Xu, Jianhan and Zeng, Jiehang and Li, Linyang and Zheng, Xiaoqing and Zhang, Qi and Chang, Kai-Wei and Hsieh, Cho-Jui},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  year={2021}
}

Citation

@article{hou2022textgrad,
  title={TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization},
  author={Hou, Bairu and Jia, Jinghan and Zhang, Yihua and Zhang, Guanhua and Zhang, Yang and Liu, Sijia and Chang, Shiyu},
  journal={arXiv preprint arXiv:2212.09254},
  year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages