-
Notifications
You must be signed in to change notification settings - Fork 1
/
spm_P_RF.m
112 lines (92 loc) · 3.5 KB
/
spm_P_RF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
function [P,p,Ec,Ek] = spm_P_RF(c,k,Z,df,STAT,R,n)
% Returns the [un]corrected P value using unifed EC theory
% FORMAT [P p Ec Ek] = spm_P_RF(c,k,z,df,STAT,R,n)
%
% c - cluster number
% k - extent {RESELS}
% z - height {minimum over n values}
% df - [df{interest} df{error}]
% STAT - Statistical field
% 'Z' - Gaussian field
% 'T' - T - field
% 'X' - Chi squared field
% 'F' - F - field
% R - RESEL Count {defining search volume}
% n - number of component SPMs in conjunction
%
% P - corrected P value - P(C >= c | K >= k}
% p - uncorrected P value
% Ec - expected number of clusters (maxima)
% Ek - expected number of resels per cluster
%
%__________________________________________________________________________
%
% spm_P_RF returns the probability of c or more clusters with more than
% k resels in volume process of R RESELS thresholded at u. All p values
% can be considered special cases:
%
% spm_P_RF(1,0,z,df,STAT,1,n) = uncorrected p value
% spm_P_RF(1,0,z,df,STAT,R,n) = corrected p value {based on height z)
% spm_P_RF(1,k,u,df,STAT,R,n) = corrected p value {based on extent k at u)
% spm_P_RF(c,k,u,df,STAT,R,n) = corrected p value {based on number c at k and u)
% spm_P_RF(c,0,u,df,STAT,R,n) = omnibus p value {based on number c at u)
%
% If n > 1 a conjunction probility over the n values of the statistic
% is returned.
%__________________________________________________________________________
%
% References:
%
% [1] Hasofer AM (1978) Upcrossings of random fields
% Suppl Adv Appl Prob 10:14-21
% [2] Friston KJ et al (1994) Assessing the Significance of Focal Activations
% Using Their Spatial Extent
% Human Brain Mapping 1:210-220
% [3] Worsley KJ et al (1996) A Unified Statistical Approach for Determining
% Significant Signals in Images of Cerebral Activation
% Human Brain Mapping 4:58-73
%__________________________________________________________________________
% Copyright (C) 1999-2013 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_P_RF.m 5770 2013-11-27 20:12:29Z karl $
%-Get expectations
%==========================================================================
% get EC densities
%--------------------------------------------------------------------------
D = find(R,1,'last');
R = R(1:D);
G = sqrt(pi)./gamma((1:D)/2);
EC = spm_ECdensity(STAT,Z,df);
EC = max(EC(1:D),eps);
% corrected p value
%--------------------------------------------------------------------------
P = triu(toeplitz(EC'.*G))^n;
P = P(1,:);
EM = (R./G).*P; % <maxima> over D dimensions
Ec = sum(EM); % <maxima>
EN = P(1)*R(D); % <resels>
Ek = EN/EM(D); % Ek = EN/EM(D);
%-Get P{n > k}
%==========================================================================
% assume a Gaussian form for P{n > k} ~ exp(-beta*k^(2/D))
% Appropriate for SPM{Z} and high d.f. SPM{T}
%--------------------------------------------------------------------------
D = D - 1;
if ~k || ~D
p = 1;
elseif STAT == 'Z'
beta = (gamma(D/2 + 1)/Ek)^(2/D);
p = exp(-beta*(k^(2/D)));
elseif STAT == 'T'
beta = (gamma(D/2 + 1)/Ek)^(2/D);
p = exp(-beta*(k^(2/D)));
elseif STAT == 'X'
beta = (gamma(D/2 + 1)/Ek)^(2/D);
p = exp(-beta*(k^(2/D)));
elseif STAT == 'F'
beta = (gamma(D/2 + 1)/Ek)^(2/D);
p = exp(-beta*(k^(2/D)));
end
%-Poisson clumping heuristic {for multiple clusters}
%==========================================================================
P = 1 - spm_Pcdf(c - 1,(Ec + eps)*p);