Skip to content

Latest commit

 

History

History
56 lines (47 loc) · 2.13 KB

README.md

File metadata and controls

56 lines (47 loc) · 2.13 KB

Multi-Spectral Stereo ($MS^2$) Outdoor Driving Dataset

This is the official github page of the $MS^2$ dataset described in the following paper.

This page provides a dataloader and simple python code for $MS^2$ dataset.

If you want to download the dataset and see the details, please visit the dataset page.

Deep Depth Estimation from Thermal Image

Ukcheol Shin, Jinsun Park, In So Kweon

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023

[Paper] [Dataset page]

Updates

  • 2023.03.30: Open Github page.
  • 2023.05.30: Release $MS^2$ dataset, dataloader, and demo code.

$MS^2$ Dataset Specification

MS2 dataset provides:

  • (Synchronized) Stereo RGB images / Stereo NIR images / Stereo thermal images
  • (Synchronized) Stereo LiDAR scans / GPS/IMU navigation data
  • Projected depth map (in RGB, NIR, thermal image planes)
  • Odometry data (in RGB, NIR, thermal cameras, and LiDAR coordinates)

Usage

  1. Download the datasets and place them in 'MS2dataset' folder in the following structure:
MS2dataset
├── sync_data
│   ├── <Sequence Name1>
│   ├── <Sequence Name2>
│   ├── ...
│   └── <Sequence NameN>
├── proj_depth
│   ├── <Sequence Name1>
│   ├── <Sequence Name2>
│   ├── ...
│   └── <Sequence NameN>
└── odom
    ├── <Sequence Name1>
    ├── <Sequence Name2>
    ├── ...
    └── <Sequence NameN>
  1. We provide a simple python code (demo.py) along with a dataloader to take a look at the provided dataset. To run the code, you need any version of Pytorch library.
python demo.py --seq_name <Sequence Name> --modality rgb --data_format MonoDepth
python demo.py --seq_name <Sequence Name> --modality nir --data_format StereoMatch
python demo.py --seq_name <Sequence Name> --modality thr --data_format MultiViewImg