-
Notifications
You must be signed in to change notification settings - Fork 0
/
algorithms.html
709 lines (685 loc) · 25.9 KB
/
algorithms.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Google Tag Manager -->
<script>(function (w, d, s, l, i) {
w[l] = w[l] || []; w[l].push({
'gtm.start':
new Date().getTime(), event: 'gtm.js'
}); var f = d.getElementsByTagName(s)[0],
j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src =
'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f);
})(window, document, 'script', 'dataLayer', 'GTM-54ZSB9K');</script>
<!-- End Google Tag Manager -->
<title>UniFeat | Feature Selection Algorithms</title>
<!-- FAVICON -->
<link rel="apple-touch-icon" sizes="180x180" href="images/favicons/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="images/favicons/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="images/favicons/favicon-16x16.png">
<link rel="manifest" href="images/favicons/site.webmanifest">
<!-- HTML Meta Tags -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="description" content="UniFeat is an open-source tool developed in Java for performing feature selection in different areas of research. It provides a set of well-known feature selection methods.">
<meta name="keywords" content="UniFeat, Machine Learning, Feature Selection, High-dimensionality, Dimensionality Reduction, Supervised Learning, Unsupervised Learning">
<meta name="author" content="Sina Tabakhi">
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<!-- PLUGINS CSS STYLE -->
<!-- Bootstrap -->
<link href="plugins/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<!-- Font Awesome -->
<link href="plugins/font-awsome/css/font-awesome.min.css" rel="stylesheet">
<!-- Magnific Popup -->
<link href="plugins/magnific-popup/magnific-popup.css" rel="stylesheet">
<!-- Slick Carousel -->
<link href="plugins/slick/slick.css" rel="stylesheet">
<link href="plugins/slick/slick-theme.css" rel="stylesheet">
<!-- CUSTOM CSS -->
<link href="css/style.css" rel="stylesheet">
</head>
<body class="body-wrapper">
<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-54ZSB9K" height="0" width="0"
style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->
<!--========================================
= Navigation Section =
=========================================-->
<nav class="navbar main-nav border-less fixed-top navbar-expand-lg p-0">
<div class="container-fluid p-0">
<!-- logo -->
<a class="navbar-brand" href="index.html">
<img src="images/logo.png" alt="logo">
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav"
aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
<span class="fa fa-bars"></span>
</button>
<div class="collapse navbar-collapse" id="navbarNav">
<ul class="navbar-nav mx-auto">
<li class="nav-item">
<a class="nav-link" href="index.html">Home
<span>/</span>
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="software.html">Software
<span>/</span>
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="documentation.html">Documentation
<span>/</span>
</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="algorithms.html">Algorithms
<span>/</span>
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="datasets.html">Datasets
<span>/</span>
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="people.html">People
<span>/</span>
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="archive.html">Archive
<span>/</span>
</a>
</li>
<li class="nav-item">
<a class="nav-link" href="citing.html">Citing UniFeat
</a>
</li>
</ul>
</div>
</div>
</nav>
<!--==== End of Navigation Section ====-->
<!--================================
= Page Title =
=================================-->
<section class="page-title bg-title overlay-dark">
<div class="container">
<div class="row">
<div class="col-12 text-center">
<div class="title">
<h3>Algorithms</h3>
</div>
<ol class="breadcrumb p-0 m-0">
<li class="breadcrumb-item"><a href="index.html">Home</a></li>
<li class="breadcrumb-item active">Algorithms</li>
</ol>
</div>
</div>
</div>
</section>
<!--==== End of Page Title ====-->
<!--==============================
= Schedule =
===============================-->
<section class="section schedule">
<div class="container">
<div class="row">
<div class="col-12">
<div class="section-title">
<h3><span class="alternate">Feature Selection</span> Algorithms</h3>
<p>UniFeat is a collection of well-known and state-of-the-art feature selection methods.
The description of the current feature selection methods in the repository of UniFeat is
listed in the following table.</p>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<div class="schedule-tab">
<ul class="nav nav-pills text-center">
<li class="nav-item">
<a class="nav-link active" href="#sep2022" data-toggle="pill">
Version 0.1.1
<span>September 2022</span>
</a>
</li>
</ul>
</div>
<div class="schedule-contents bg-schedule">
<div class="tab-content" id="pills-tabContent">
<div class="tab-pane fade show active schedule-item" id="sep2022">
<!-- Headings -->
<ul class="m-0 p-0">
<li class="headings">
<div class="method">Method</div>
<div class="approach">Filter / Wrapper / Embedded</div>
<div class="learning">Supervised / Unsupervised</div>
<div class="reference">Reference</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Information gain</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html">M.
Mitchell, "Machine Learning"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Gain ratio</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html">M.
Mitchell, "Machine Learning"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Symmetrical uncertainty</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank" href="http://dl.acm.org/citation.cfm?id=1207436">H.
Liu and H. Motoda, "Computational methods of feature selection"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Fisher score</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank" href="http://arxiv.org/abs/1202.3725">Q. Gu, Z. Li,
and J. Han, "Generalized fisher score for feature selection"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Gini index</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S095741740600114X">W.
Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, "A novel
feature selection algorithm for text categorization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">mRMR</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://ieeexplore.ieee.org/document/1453511">H.
Peng, F. Long, and C. Ding, "Feature selection based on mutual
information criteria of max-dependency, max-relevance, and
min-redundancy"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Laplacian score</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised & Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://papers.nips.cc/paper/2909-laplacian-score-for-feature-selection">X.
He, D. Cai, and P. Niyogi, "Laplacian score for feature
selection"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">RRFS</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Supervised & Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0031320311005097">A.
J. Ferreira and M. A. T. Figueiredo, "An unsupervised approach to
feature discretization and selection"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Term variance</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="https://ieeexplore.ieee.org/document/1598807">L. Liu, J. Kang,
J. Yu, Z. Wang, "A comparative study on unsupervised feature
selection methods for text clustering"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Mutual correlation</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://link.springer.com/chapter/10.1007%2F11892755_59">M.
Haindl, P. Somol, D. Ververidis, and C. Kotropoulos, "Feature
selection based on mutual correlation"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Random subspace method</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0167865505003752">C.
Lai, M. J. T. Reinders, and L. Wessels, "Random subspace method for
multivariate feature selection"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">UFSACO</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0952197614000621">S.
Tabakhi, P. Moradi, and F. Akhlaghian, "An unsupervised feature
selection algorithm based on ant colony optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">RRFSACO_1</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0031320315001211">S.
Tabakhi and P. Moradi, "Relevance–redundancy feature selection based
on ant colony optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">RRFSACO_2</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0031320315001211">S.
Tabakhi and P. Moradi, "Relevance–redundancy feature selection based
on ant colony optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">IRRFSACO_1</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0031320315001211">S.
Tabakhi and P. Moradi, "Relevance–redundancy feature selection based
on ant colony optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">IRRFSACO_2</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0031320315001211">S.
Tabakhi and P. Moradi, "Relevance–redundancy feature selection based
on ant colony optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">MGSACO</span>
</div>
<div class="approach">Filter</div>
<div class="learning">Unsupervised</div>
<div class="reference">
<a target="_blank"
href="http://www.sciencedirect.com/science/article/pii/S0925231215006451">S.
Tabakhi, A. Najafi, R. Ranjbar, and P. Moradi, "Gene selection for
microarray data classification using a novel ant colony
optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Binary particle swarm optimization (BPSO)</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="http://researcharchive.vuw.ac.nz/xmlui/handle/10063/3198">B.
Xue, "Particle Swarm Optimisation for Feature Selection [Ph.D
thesis]"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Continuous particle swarm optimization (CPSO)</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="http://researcharchive.vuw.ac.nz/xmlui/handle/10063/3198">B.
Xue, "Particle Swarm Optimisation for Feature Selection [Ph.D
thesis]"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Particle swarm optimization version 4-2
(PSO(4-2))</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://www.sciencedirect.com/science/article/pii/S1568494613003128">B.
Xue, M. Zhang, and W. N. Browne, "Particle swarm optimisation for
feature selection in classification: Novel initialisation and
updating mechanisms"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">HPSO-LS</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://www.sciencedirect.com/science/article/pii/S1568494616300321">P.
Moradi and M. Gholampour, "A hybrid particle swarm optimization for
feature subset selection by integrating a novel local search
strategy"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Simple GA</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0065127">F.
T. Hussein, "Genetic algorithm for feature selection and weighting
for off-line character recognition"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">HGAFS</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://www.sciencedirect.com/science/article/pii/S0925231211002748">Md.
M. Kabir, Md. Shahjahan, and K. Murase, "A new local search based
hybrid genetic algorithm for feature selection"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Optimal ACO</span>
</div>
<div class="approach">Wrapper</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://www.sciencedirect.com/science/article/pii/S0957417408005459">M.
H. Aghdam, N. Ghasem-Aghaee, and M. E. Basiri, "Text feature
selection using ant colony optimization"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Decision tree based method</span>
</div>
<div class="approach">Embedded</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://link.springer.com/chapter/10.1007/978-3-540-35488-8_6">T.
N. Lal, O. Chapelle, J. Weston, and A. Elisseeff, "Embedded
Methods"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">Random forest</span>
</div>
<div class="approach">Embedded</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://link.springer.com/article/10.1023/A:1010933404324">L.
Breiman, "Random Forests"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">SVM_RFE</span>
</div>
<div class="approach">Embedded</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://link.springer.com/article/10.1023/A:1012487302797">I.
GUYON, J. WESTON, S. BARNHILL, and V. VAPNIK, "Gene Selection for
Cancer Classification using Support Vector Machines"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">MSVM_RFE</span>
</div>
<div class="approach">Embedded</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="http://ieeexplore.ieee.org/document/1501840/?anchor=authors">K.
B. Duan, J. C. Rajapakse, H. Wang, and F. Azuaje, "Multiple SVM-RFE
for Gene Selection in Cancer Classification With Expression
Data"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">OVO_SVM_RFE</span>
</div>
<div class="approach">Embedded</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://link.springer.com/chapter/10.1007/978-3-540-71783-6_5">K.
B. Duan, J. C. Rajapakse, and M. N. Nguyen, "One-Versus-One and
One-Versus-All Multiclass SVM-RFE for Gene Selection in Cancer
Classification"</a>.
</div>
</div>
</li>
<!-- Method Details -->
<li class="schedule-details">
<div class="block">
<div class="method">
<span class="name">OVA_SVM_RFE</span>
</div>
<div class="approach">Embedded</div>
<div class="learning">Supervised</div>
<div class="reference">
<a target="_blank"
href="https://link.springer.com/chapter/10.1007/978-3-540-71783-6_5">K.
B. Duan, J. C. Rajapakse, and M. N. Nguyen, "One-Versus-One and
One-Versus-All Multiclass SVM-RFE for Gene Selection in Cancer
Classification"</a>.
</div>
</div>
</li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!--==== End of Schedule ====-->
<!-- Subfooter -->
<footer class="subfooter">
<div class="container">
<div class="row">
<div class="col-md-6 align-self-center">
<div class="copyright-text">
<p>© 2023 <a href="index.html">UniFeat</a>.</p>
</div>
</div>
<div class="col-md-6">
<a href="#" class="to-top"><i class="fa fa-angle-up"></i></a>
</div>
</div>
</div>
</footer>
<!-- JAVASCRIPTS -->
<!-- jQuey -->
<script src="plugins/jquery/jquery.js"></script>
<!-- Popper js -->
<script src="plugins/popper/popper.min.js"></script>
<!-- Bootstrap 4 -->
<script src="plugins/bootstrap/js/bootstrap.min.js"></script>
<!-- Smooth Scroll -->
<script src="plugins/smoothscroll/SmoothScroll.min.js"></script>
<!-- Isotope -->
<script src="plugins/isotope/mixitup.min.js"></script>
<!-- Magnific Popup -->
<script src="plugins/magnific-popup/jquery.magnific-popup.min.js"></script>
<!-- Slick Carousel -->
<script src="plugins/slick/slick.min.js"></script>
<!-- SyoTimer -->
<script src="plugins/syotimer/jquery.syotimer.min.js"></script>
<!-- Custom Script -->
<script src="js/custom.js"></script>
</body>
</html>