-
Notifications
You must be signed in to change notification settings - Fork 33
/
ranking.m
125 lines (112 loc) · 4.58 KB
/
ranking.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
% RANKING.M (RANK-based fitness assignment)
%
% This function performs ranking of individuals.
%
% Syntax: FitnV = ranking(ObjV, RFun, SUBPOP)
%
% This function ranks individuals represented by their associated
% cost, to be *minimized*, and returns a column vector FitnV
% containing the corresponding individual fitnesses. For multiple
% subpopulations the ranking is performed separately for each
% subpopulation.
%
% Input parameters:
% ObjV - Column vector containing the objective values of the
% individuals in the current population (cost values).
% RFun - (optional) If RFun is a scalar in [1, 2] linear ranking is
% assumed and the scalar indicates the selective pressure.
% If RFun is a 2 element vector:
% RFun(1): SP - scalar indicating the selective pressure
% RFun(2): RM - ranking method
% RM = 0: linear ranking
% RM = 1: non-linear ranking
% If RFun is a vector with length(Rfun) > 2 it contains
% the fitness to be assigned to each rank. It should have
% the same length as ObjV. Usually RFun is monotonously
% increasing.
% If RFun is omitted or NaN, linear ranking
% and a selective pressure of 2 are assumed.
% SUBPOP - (optional) Number of subpopulations
% if omitted or NaN, 1 subpopulation is assumed
%
% Output parameters:
% FitnV - Column vector containing the fitness values of the
% individuals in the current population.
%
%
% Author: Hartmut Pohlheim (Carlos Fonseca)
% History: 01.03.94 non-linear ranking
% 10.03.94 multiple populations
% 21.01.03 updated for MATLAB v6 by Alex Shenfield
function FitnV = ranking(ObjV, RFun, SUBPOP)
% Identify the vector size (Nind)
[Nind,~] = size(ObjV);
if nargin < 2, RFun = []; end
if nargin > 1, if isnan(RFun), RFun = []; end, end
if prod(size(RFun)) == 2,
if RFun(2) == 1, NonLin = 1;
elseif RFun(2) == 0, NonLin = 0;
else error('Parameter for ranking method must be 0 or 1'); end
RFun = RFun(1);
if isnan(RFun), RFun = 2; end
elseif prod(size(RFun)) > 2,
if prod(size(RFun)) ~= Nind, error('ObjV and RFun disagree'); end
elseif prod(size(RFun)) < 2, NonLin = 0;
end
if nargin < 3, SUBPOP = 1; end
if nargin > 2,
if isempty(SUBPOP), SUBPOP = 1;
elseif isnan(SUBPOP), SUBPOP = 1;
elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end
end
if (Nind/SUBPOP) ~= fix(Nind/SUBPOP), error('ObjV and SUBPOP disagree'); end
Nind = Nind/SUBPOP; % Compute number of individuals per subpopulation
% Check ranking function and use default values if necessary
if isempty(RFun),
% linear ranking with selective pressure 2
RFun = 2*[0:Nind-1]'/(Nind-1);
elseif prod(size(RFun)) == 1
if NonLin == 1,
% non-linear ranking
if RFun(1) < 1, error('Selective pressure must be greater than 1');
elseif RFun(1) > Nind-2, error('Selective pressure too big'); end
Root1 = roots([RFun(1)-Nind [RFun(1)*ones(1,Nind-1)]]);
RFun = (abs(Root1(1)) * ones(Nind,1)) .^ [(0:Nind-1)'];
RFun = RFun / sum(RFun) * Nind;
else
% linear ranking with SP between 1 and 2
if (RFun(1) < 1 | RFun(1) > 2),
error('Selective pressure for linear ranking must be between 1 and 2');
end
RFun = 2-RFun + 2*(RFun-1)*[0:Nind-1]'/(Nind-1);
end
end;
FitnV = [];
% loop over all subpopulations
for irun = 1:SUBPOP,
% Copy objective values of actual subpopulation
ObjVSub = ObjV((irun-1)*Nind+1:irun*Nind);
% Sort does not handle NaN values as required. So, find those...
NaNix = isnan(ObjVSub);
Validix = find(~NaNix);
% ... and sort only numeric values (smaller is better).
[~,ix] = sort(-ObjVSub(Validix));
% Now build indexing vector assuming NaN are worse than numbers,
% (including Inf!)...
ix = [find(NaNix) ; Validix(ix)];
% ... and obtain a sorted version of ObjV
Sorted = ObjVSub(ix);
% Assign fitness according to RFun.
i = 1;
FitnVSub = zeros(Nind,1);
for j = [find(Sorted(1:Nind-1) ~= Sorted(2:Nind)); Nind]',
FitnVSub(i:j) = sum(RFun(i:j)) * ones(j-i+1,1) / (j-i+1);
i =j+1;
end
% Finally, return unsorted vector.
[~,uix] = sort(ix);
FitnVSub = FitnVSub(uix);
% Add FitnVSub to FitnV
FitnV = [FitnV; FitnVSub];
end
% End of function