-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiu_test_lstm.py
535 lines (432 loc) · 22.6 KB
/
iu_test_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# python# -*- coding: utf-8 -*-
import time
import pickle
import random
import argparse
from tqdm import tqdm
from PIL import Image
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
from utils.models import *
from utils.dataset import *
from utils.loss import *
from utils.build_tag import *
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
class CaptionSampler(object):
def __init__(self, args):
self.args = args
self.vocab = self.__init_vocab()
self.tagger = self.__init_tagger()
self.transform = self.__init_transform()
self.data_loader = self.__init_data_loader(self.args.file_lits) # 随机生成 the path for test file list
self.model_state_dict = self.__load_mode_state_dict()
self.extractor = self.__init_visual_extractor()
self.mlc = self.__init_mlc()
self.co_attention = self.__init_co_attention()
self.sentence_model = self.__init_sentence_model()
self.word_model = self.__init_word_word()
self.ce_criterion = self._init_ce_criterion()
self.mse_criterion = self._init_mse_criterion()
self.writer = self._init_writer()
@staticmethod
def _init_ce_criterion():
return nn.CrossEntropyLoss(size_average=False, reduce=False)
@staticmethod
def _init_mse_criterion():
return nn.MSELoss()
# def rand_inputofG(self, file): # 随机写入500
# with open('./data/new_data/image_name.txt', 'r') as f:
# lines = f.readlines()
#
# fa = open(file, 'w')
# for _ in range(500):
# fa.write(lines.pop(random.randint(0, len(lines) - 1)))
# return fa
def _init_writer(self):
writer = open('./data/new_data/disc_train_fake_data.txt', 'w')
return writer
def test(self):
tag_loss, stop_loss, word_loss, loss = 0, 0, 0, 0
self.extractor.eval()
self.mlc.eval()
self.co_attention.eval()
self.sentence_model.eval()
self.word_model.eval()
for i, (images, _, label, captions, prob) in enumerate(self.data_loader):
batch_tag_loss, batch_stop_loss, batch_word_loss, batch_loss = 0, 0, 0, 0
images = self.__to_var(images, requires_grad=False)
visual_features, avg_features = self.extractor.forward(images)
tags, semantic_features = self.mlc.forward(avg_features)
batch_tag_loss = self.mse_criterion(tags, self.__to_var(label, requires_grad=False)).sum()
sentence_states = None
prev_hidden_states = self.__to_var(torch.zeros(images.shape[0], 1, self.args.hidden_size))
context = self.__to_var(torch.Tensor(captions).long(), requires_grad=False)
prob_real = self.__to_var(torch.Tensor(prob).long(), requires_grad=False)
for sentence_index in range(captions.shape[1]):
ctx, v_att, a_att = self.co_attention.forward(avg_features,
semantic_features,
prev_hidden_states)
topic, p_stop, hidden_states, sentence_states = self.sentence_model.forward(ctx,
prev_hidden_states,
sentence_states)
batch_stop_loss += self.ce_criterion(p_stop.squeeze(), prob_real[:, sentence_index]).sum()
for word_index in range(1, captions.shape[2]):
words = self.word_model.forward(topic, context[:, sentence_index, :word_index])
word_mask = (context[:, sentence_index, word_index] > 0).float()
batch_word_loss += (self.ce_criterion(words, context[:, sentence_index, word_index])
* word_mask).sum()
batch_loss = self.args.lambda_tag * batch_tag_loss \
+ self.args.lambda_stop * batch_stop_loss \
+ self.args.lambda_word * batch_word_loss
tag_loss += self.args.lambda_tag * batch_tag_loss.data
stop_loss += self.args.lambda_stop * batch_stop_loss.data
word_loss += self.args.lambda_word * batch_word_loss.data
loss += batch_loss.data
return tag_loss, stop_loss, word_loss, loss
def generate(self):
self.extractor.train()
self.mlc.train()
self.co_attention.train()
self.sentence_model.train()
self.word_model.train()
progress_bar = tqdm(self.data_loader, desc='Generating')
results = {}
for images, image_id, label, captions, _ in progress_bar:
images = self.__to_var(images, requires_grad=False)
visual_features, avg_features = self.extractor.forward(images)
tags, semantic_features = self.mlc.forward(avg_features)
sentence_states = None
prev_hidden_states = self.__to_var(torch.zeros(images.shape[0], 1, self.args.hidden_size))
pred_sentences = {} # 预测
real_sentences = {} # 真实
for i in image_id:
pred_sentences[i] = {} # 具体到每一张
real_sentences[i] = {}
for i in range(self.args.s_max): # 句子数
ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features, semantic_features, prev_hidden_states)
topic, p_stop, hidden_state, sentence_states = self.sentence_model.forward(ctx,
prev_hidden_states,
sentence_states)
start_tokens = np.zeros((topic.shape[0], 1)) # [4, 1]
start_tokens[:, 0] = self.vocab('<start>')
start_tokens = self.__to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
sample_ids = self.word_model.sample(topic, start_tokens)
# p_stop = p_stop.squeeze(1)
# p_stop = torch.max(p_stop, 1)[1].unsqueeze(1)
# sample_ids = torch.Tensor(sample_ids).cpu() * p_stop.cpu()
prev_hidden_states = hidden_state
for id, array in zip(image_id, sample_ids):
pred_sentences[id][i] = self.__vec2sent(array) # cpu().detach().numpy()
for id, array in zip(image_id, captions):
for i, sent in enumerate(array):
real_sentences[id][i] = self.__vec2sent(sent)
for id, pred_tag, real_tag in zip(image_id, tags, label):
results[id] = {
# 'Real Tags': self.tagger.inv_tags2array(real_tag),
# 'Pred Tags': self.tagger.array2tags(torch.topk(pred_tag, self.args.k)[1].cpu().data.numpy()),
'Pred Sent': pred_sentences[id],
'Real Sent': real_sentences[id]
}
# print(id)
# print("pred_sentences", pred_sentences[id])
# print("=====================================================")
self.writer.write(str(pred_sentences[id]) + "." + "\n")
self.__save_json(results)
def sample(self, image_file):
self.extractor.eval()
self.mlc.eval()
self.co_attention.eval()
self.sentence_model.eval()
self.word_model.eval()
cam_dir = self.__init_cam_path(image_file)
image_file = os.path.join(self.args.image_dir, image_file)
imageData = Image.open(image_file).convert('RGB')
imageData = self.transform(imageData)
imageData = imageData.unsqueeze_(0)
image = self.__to_var(imageData, requires_grad=False)
visual_features, avg_features = self.extractor.forward(image)
avg_features.unsqueeze_(0)
tags, semantic_features = self.mlc(avg_features)
sentence_states = None
prev_hidden_states = self.__to_var(torch.zeros(1, 1, self.args.hidden_size))
pred_sentences = []
for i in range(self.args.s_max):
ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features, semantic_features, prev_hidden_states)
topic, p_stop, hidden_state, sentence_states = self.sentence_model.forward(ctx,
prev_hidden_states,
sentence_states)
p_stop = p_stop.squeeze(1)
p_stop = torch.max(p_stop, 1)[1].unsqueeze(1)
# print(type(p_stop)) <class 'torch.autograd.variable.Variable'>
start_tokens = np.zeros((topic.shape[0], 1))
start_tokens[:, 0] = self.vocab('<start>')
start_tokens = self.__to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
sampled_ids = self.word_model.sample(topic, start_tokens)
prev_hidden_states = hidden_state
p_stop = p_stop.cpu().data.numpy() # 将p_stop 转换为numpy数组
sampled_ids = sampled_ids * p_stop
# print(type(sampled_ids)) # <class 'numpy.ndarray'>
# sampled_ids = Variable(sampled_ids) sampled_ids.cpu().detach().numpy()[0])
# sampled_ids.astype(np.float64)
# sampled_ids = Variable(torch.from_numpy(sampled_ids))
sampled_ids = Variable(torch.from_numpy(sampled_ids), requires_grad=True)
pred_sentences.append(self.__vec2sent(sampled_ids.cpu().data.numpy()[0]))
cam = torch.mul(visual_features, alpha_v.view(alpha_v.shape[0], alpha_v.shape[1], 1, 1)).sum(1)
cam.squeeze_()
cam = cam.cpu().data.numpy()
cam = cam / np.sum(cam)
cam = cv2.resize(cam, (self.args.cam_size, self.args.cam_size))
cam = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET)
imgOriginal = cv2.imread(image_file, 1)
imgOriginal = cv2.resize(imgOriginal, (self.args.cam_size, self.args.cam_size))
img = cam * 0.5 + imgOriginal
cv2.imwrite(os.path.join(cam_dir, '{}.png'.format(i)), img)
print("pred sentences", pred_sentences)
return '. '.join(pred_sentences)
def _generate_cam(self, images_id, visual_features, alpha_v, sentence_id):
alpha_v *= 100
cam = torch.mul(visual_features, alpha_v.view(alpha_v.shape[0], alpha_v.shape[1], 1, 1)).sum(1)
cam.squeeze_()
cam = cam.cpu().data.numpy()
for i in range(cam.shape[0]):
image_id = images_id[i]
cam_dir = self.__init_cam_path(images_id[i])
org_img = cv2.imread(os.path.join(self.args.image_dir, image_id), 1)
org_img = cv2.resize(org_img, (self.args.cam_size, self.args.cam_size))
heatmap = cam[i]
heatmap = heatmap / np.max(heatmap)
heatmap = cv2.resize(heatmap, (self.args.cam_size, self.args.cam_size))
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
img = heatmap * 0.5 + org_img
cv2.imwrite(os.path.join(cam_dir, '{}.png'.format(sentence_id)), img)
def __init_cam_path(self, image_file):
generate_dir = os.path.join(self.args.model_dir, self.args.generate_dir)
if not os.path.exists(generate_dir):
os.makedirs(generate_dir)
image_dir = os.path.join(generate_dir, image_file)
if not os.path.exists(image_dir):
os.makedirs(image_dir)
return image_dir
def __save_json(self, result):
result_path = self.args.result_path
if not os.path.exists(result_path):
os.makedirs(result_path)
with open(os.path.join(result_path, '{}.json'.format(self.args.result_name)), 'w') as f:
json.dump(result, f) # 将json信息写进文件 dump
def __load_mode_state_dict(self):
try:
model_state_dict = torch.load(os.path.join(self.args.model_dir, self.args.load_model_path))
print("[Load Model-{} Succeed!]".format(self.args.load_model_path)) # train_best_loss.pth.tar
print("Load From Epoch {}".format(model_state_dict['epoch']))
return model_state_dict
except Exception as err:
print("[Load Model Failed] {}".format(err))
raise err
def __init_tagger(self):
return Tag()
def __vec2sent(self, array): # array是word_id 将Word_id转成单词
sampled_caption = []
for word_id in array:
word = self.vocab.get_word_by_id(word_id)
if word == '<start>':
continue
if word == '<end>' or word == '<pad>':
break
sampled_caption.append(word)
return ' '.join(sampled_caption)
def __init_vocab(self):
with open(self.args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
print("Vocabulary Size:{}\n".format(len(vocab)))
return vocab
def __init_data_loader(self, file_list):
data_loader = get_loader(image_dir=self.args.image_dir,
caption_json=self.args.caption_json,
file_list=file_list,
vocabulary=self.vocab,
transform=self.transform,
batch_size=self.args.batch_size,
s_max=self.args.s_max,
n_max=self.args.n_max,
shuffle=False)
return data_loader
def __init_transform(self):
transform = transforms.Compose([
transforms.Resize((self.args.resize, self.args.resize)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
return transform
def __to_var(self, x, requires_grad=True):
if self.args.cuda:
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
def __init_visual_extractor(self):
model = VisualFeatureExtractor(model_name=self.args.visual_model_name,
pretrained=self.args.pretrained)
if self.model_state_dict is not None:
model.load_state_dict(self.model_state_dict['extractor'])
print("Visual Extractor Loaded!")
if self.args.cuda:
model = model.cuda()
return model
def __init_mlc(self):
model = MLC(classes=self.args.classes,
sementic_features_dim=self.args.sementic_features_dim,
fc_in_features=self.extractor.out_features,
k=self.args.k)
if self.model_state_dict is not None:
print("MLC Loaded!")
model.load_state_dict(self.model_state_dict['mlc'])
if self.args.cuda:
model = model.cuda()
return model
def __init_co_attention(self):
model = CoAttention(version=self.args.attention_version,
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
visual_size=self.extractor.out_features,
k=self.args.k,
momentum=self.args.momentum)
if self.model_state_dict is not None:
print("Co-Attention Loaded!")
model.load_state_dict(self.model_state_dict['co_attention'])
if self.args.cuda:
model = model.cuda()
return model
def __init_sentence_model(self):
model = SentenceLSTM(version=self.args.sent_version,
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
num_layers=self.args.sentence_num_layers,
dropout=self.args.dropout,
momentum=self.args.momentum)
if self.model_state_dict is not None:
print("Sentence Model Loaded!")
model.load_state_dict(self.model_state_dict['sentence_model'])
if self.args.cuda:
model = model.cuda()
return model
def __init_word_word(self):
model = WordLSTM(vocab_size=len(self.vocab),
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
num_layers=self.args.word_num_layers,
n_max=self.args.n_max)
if self.model_state_dict is not None:
print("Word Model Loaded!")
model.load_state_dict(self.model_state_dict['word_model'])
if self.args.cuda:
model = model.cuda()
return model
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
"""
Data Argument
"""
# Path Argument
parser.add_argument('--model_dir', type=str, default='./report_v4_models/v4/') # 20190829-13:39/ ./report_v4_models/v4/20190802-07:33/ ./report_v4_models/v4/20190724-02:44/
parser.add_argument('--image_dir', type=str, default='./data/images',
help='the path for images')
parser.add_argument('--caption_json', type=str, default='./data/new_data/captions.json',
help='path for captions')
parser.add_argument('--vocab_path', type=str, default='./data/new_data/vocab.pkl',
help='the path for vocabulary object')
parser.add_argument('--file_lits', type=str, default='./data/new_data/val_data.txt',
help='the path for test file list')
parser.add_argument('--load_model_path', type=str, default='train_best_loss_lstm.pth.tar',
help='The path of loaded model')
# transforms argument
parser.add_argument('--resize', type=int, default=224,
help='size for resizing images')
# CAM 是什么???
parser.add_argument('--cam_size', type=int, default=224)
parser.add_argument('--generate_dir', type=str, default='cam')
# Saved result
parser.add_argument('--result_path', type=str, default='./results',
help='the path for storing results')
parser.add_argument('--result_name', type=str, default='generate_lstm',
help='the name of results')
"""
Model argument
"""
parser.add_argument('--momentum', type=int, default=0.1)
# VisualFeatureExtractor
parser.add_argument('--visual_model_name', type=str, default='resnet152',
help='CNN model name')
parser.add_argument('--pretrained', action='store_true', default=False,
help='not using pretrained model when training')
# MLC
parser.add_argument('--classes', type=int, default=210) # 210个标签
parser.add_argument('--sementic_features_dim', type=int, default=512)
parser.add_argument('--k', type=int, default=10)
# Co-Attention
parser.add_argument('--attention_version', type=str, default='v1')
parser.add_argument('--embed_size', type=int, default=512)
parser.add_argument('--hidden_size', type=int, default=512)
# Sentence Model
parser.add_argument('--sent_version', type=str, default='v1')
parser.add_argument('--sentence_num_layers', type=int, default=2)
parser.add_argument('--dropout', type=float, default=0.1)
# Word Model
parser.add_argument('--word_num_layers', type=int, default=1)
"""
Generating Argument
"""
parser.add_argument('--s_max', type=int, default=6)
parser.add_argument('--n_max', type=int, default=15)
parser.add_argument('--batch_size', type=int, default=4)
# Loss function
parser.add_argument('--lambda_tag', type=float, default=10000)
parser.add_argument('--lambda_stop', type=float, default=10)
parser.add_argument('--lambda_word', type=float, default=1)
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
# print(args)
sampler = CaptionSampler(args)
# sampler.sample('CXR1000_IM-0003-1001.png') # 第一幅图片
sampler.generate()
f = open('./results/results.txt', 'r')
lines = f.readlines() # 把每一行的内容变为集合lines的一个元素
f.close()
for i, line in enumerate(lines):
if i%3 == 1:
lines[i] = str(lines[i]).replace('{', '').replace('}', '') # 去除[],这两行按数据不同,可以选择
lines[i] = str(lines[i]).replace('0:', '').replace('1:', '').replace('2:', '').replace('3:', '').replace('4:', '').replace('5:', '').replace('6:', '').replace('7:', '').replace('8:', '').replace('9:', '')
lines[i] = str(lines[i]).replace("'", '') # 去除单引号,每行末尾追加换行符
elif i % 3 == 2:
lines[i] = str(lines[i]).replace('{', '').replace('}', '') # 去除[],这两行按数据不同,可以选择
lines[i] = str(lines[i]).replace('0:', '').replace('1:', '').replace('2:', '').replace('3:', '').replace('4:', '').replace('5:', '').replace('6:', '').replace('7:', '').replace('8:', '').replace('9:', '')
lines[i] = str(lines[i]).replace("'", '') # 去除单引号,每行末尾追加换行符
f = open('./results/results.txt', 'w')
f.writelines(lines)
f.close()
# 操作 disc_fake
with open('./data/new_data/disc_train_fake_data.txt', 'r') as fr:
lines = fr.readlines()
for i, line in enumerate(lines):
lines[i] = str(lines[i]).replace('{', '').replace('}', '') # 去除[],这两行按数据不同,可以选择
lines[i] = str(lines[i]).replace('0:', '').replace('1:', '').replace('2:', '').replace('3:', '').replace(
'4:', '').replace('5:', '')
lines[i] = str(lines[i]).replace("'", '') # 去除单引号,每行末尾追加换行符
lines[i] = str(lines[i]).replace(", ", '.')
f = open('./data/new_data/disc_train_fake_data.txt', 'w')
f.writelines(lines)
f.close()
# 操作 disc_fake_D
# with open('./data/new_data/disc_train_fake_data_D.txt', 'r') as fr:
# lines = fr.readlines()
# for i, line in enumerate(lines):
# lines[i] = str(lines[i]).replace('{', '').replace('}', '') # 去除[],这两行按数据不同,可以选择
# lines[i] = str(lines[i]).replace('0:', '').replace('1:', '').replace('2:', '').replace('3:', '').replace(
# '4:', '').replace('5:', '')
# lines[i] = str(lines[i]).replace("'", '') # 去除单引号,每行末尾追加换行符
# f = open('./data/new_data/disc_train_fake_data_D.txt', 'w')
# f.writelines(lines)
# f.close()