-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathlars.py
91 lines (78 loc) · 3.54 KB
/
lars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
""" Layer-wise adaptive rate scaling for SGD in PyTorch! """
import torch
from torch.optim.optimizer import Optimizer, required
#Taken from https://github.com/noahgolmant/pytorch-lars/blob/master/lars.py
class LARS(Optimizer):
r"""Implements layer-wise adaptive rate scaling for SGD.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): base learning rate (\gamma_0)
momentum (float, optional): momentum factor (default: 0) ("m")
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
("\beta")
eta (float, optional): LARS coefficient
max_epoch: maximum training epoch to determine polynomial LR decay.
Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg.
Large Batch Training of Convolutional Networks:
https://arxiv.org/abs/1708.03888
"""
def __init__(self, params, lr=required, momentum=.9,
weight_decay=.0005, eta=0.001, max_epoch=200):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}"
.format(weight_decay))
if eta < 0.0:
raise ValueError("Invalid LARS coefficient value: {}".format(eta))
self.epoch = 0
defaults = dict(lr=lr, momentum=momentum,
weight_decay=weight_decay,
eta=eta, max_epoch=max_epoch)
super(LARS, self).__init__(params, defaults)
def step(self, epoch=None, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
epoch: current epoch to calculate polynomial LR decay schedule.
if None, uses self.epoch and increments it.
"""
loss = None
if closure is not None:
loss = closure()
if epoch is None:
epoch = self.epoch
self.epoch += 1
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
eta = group['eta']
lr = group['lr']
max_epoch = group['max_epoch']
for p in group['params']:
if p.grad is None:
continue
param_state = self.state[p]
d_p = p.grad.data
weight_norm = torch.norm(p.data)
grad_norm = torch.norm(d_p)
# Global LR computed on polynomial decay schedule
decay = (1 - float(epoch) / max_epoch) ** 2
global_lr = lr * decay
# Compute local learning rate for this layer
local_lr = eta * weight_norm / \
(grad_norm + weight_decay * weight_norm)
# Update the momentum term
actual_lr = local_lr * global_lr
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = \
torch.zeros_like(p.data)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(actual_lr, d_p + weight_decay * p.data)
p.data.add_(-buf)
return loss