-
Notifications
You must be signed in to change notification settings - Fork 58
/
video_audio_demo.py
283 lines (251 loc) · 9.87 KB
/
video_audio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import os
import time
import numpy as np
import torch
from PIL import Image
from decord import VideoReader, cpu
from vita.constants import (
DEFAULT_AUDIO_TOKEN,
DEFAULT_IMAGE_TOKEN,
DEFAULT_VIDEO_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
MAX_IMAGE_LENGTH,
)
from vita.conversation import SeparatorStyle, conv_templates
from vita.model.builder import load_pretrained_model
from vita.util.data_utils_video_audio_neg_patch import dynamic_preprocess
from vita.util.mm_utils import (
KeywordsStoppingCriteria,
get_model_name_from_path,
tokenizer_image_audio_token,
tokenizer_image_token,
)
from vita.util.utils import disable_torch_init
def _get_rawvideo_dec(
video_path,
image_processor,
max_frames=MAX_IMAGE_LENGTH,
min_frames=4,
image_resolution=384,
video_framerate=1,
s=None,
e=None,
image_aspect_ratio="pad",
):
# speed up video decode via decord.
if s is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = start_time if start_time >= 0.0 else 0.0
end_time = end_time if end_time >= 0.0 else 0.0
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
print(video_path)
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
# T x 3 x H x W
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [
all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)
]
elif len(all_pos) < min_frames:
sample_pos = [
all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=min_frames, dtype=int)
]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
if image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
patch_images = [
expand2square(i, tuple(int(x * 255) for x in image_processor.image_mean))
for i in patch_images
]
patch_images = [
image_processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in patch_images
]
else:
patch_images = [
image_processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in patch_images
]
patch_images = torch.stack(patch_images)
slice_len = patch_images.shape[0]
return patch_images, slice_len
else:
print("video path: {} error.".format(video_path))
if __name__ == "__main__":
# Initialize the parser
parser = argparse.ArgumentParser(description="Process model and video paths.")
# Add arguments
parser.add_argument("--model_path", type=str, required=True, help="Path to the model directory")
parser.add_argument("--model_base", type=str, default=None)
parser.add_argument("--video_path", type=str, default=None)
parser.add_argument("--image_path", type=str, default=None)
parser.add_argument("--audio_path", type=str, default=None)
parser.add_argument("--model_type", type=str, default="mixtral-8x7b")
parser.add_argument("--conv_mode", type=str, default="mixtral_two")
parser.add_argument("--question", type=str, default="")
# Parse the arguments
args = parser.parse_args()
# Assign arguments to variables
model_path = args.model_path
model_base = args.model_base
video_path = args.video_path
image_path = args.image_path
audio_path = args.audio_path
qs = args.question
assert (audio_path is None) != (qs == ""), "Exactly one of audio_path or qs must be non-None"
conv_mode = args.conv_mode
# The number of visual tokens varies with the length of the video. "max_frames" is the maximum number of frames.
# When the video is long, we will uniformly downsample the video to meet the frames when equal to the "max_frames".
max_frames = MAX_IMAGE_LENGTH # 100
# The number of frames retained per second in the video.
video_framerate = 1
# Sampling Parameter
temperature = 0.01
top_p = None
num_beams = 1
disable_torch_init()
model_path = os.path.expanduser(model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, model_base, model_name, args.model_type
)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
image_processor = vision_tower.image_processor
audio_encoder = model.get_audio_encoder()
# audio_encoder.to(device="cuda", dtype=torch.float16)
audio_encoder.to(dtype=torch.float16)
audio_processor = audio_encoder.audio_processor
model.eval()
if audio_path is not None:
audio, audio_for_llm_lens = audio_processor.process(os.path.join(audio_path))
audio_length = audio.shape[0]
audio = torch.unsqueeze(audio, dim=0)
audio_length = torch.unsqueeze(torch.tensor(audio_length), dim=0)
audios = dict()
audios["audios"] = audio.half().cuda()
audios["lengths"] = audio_length.half().cuda()
else:
audio = torch.zeros(400, 80)
audio_length = audio.shape[0]
audio = torch.unsqueeze(audio, dim=0)
audio_length = torch.unsqueeze(torch.tensor(audio_length), dim=0)
audios = dict()
audios["audios"] = audio.half().cuda()
audios["lengths"] = audio_length.half().cuda()
# audios = None
# Check if the video exists
if video_path is not None:
video_frames, slice_len = _get_rawvideo_dec(
video_path,
image_processor,
max_frames=max_frames,
video_framerate=video_framerate,
image_aspect_ratio=getattr(model.config, "image_aspect_ratio", None),
)
image_tensor = video_frames.half().cuda()
if audio_path:
qs = DEFAULT_IMAGE_TOKEN * slice_len + "\n" + qs + DEFAULT_AUDIO_TOKEN
else:
qs = DEFAULT_IMAGE_TOKEN * slice_len + "\n" + qs
modality = "video"
elif image_path is not None:
image = Image.open(image_path).convert("RGB")
image, p_num = dynamic_preprocess(
image, min_num=1, max_num=12, image_size=448, use_thumbnail=True
)
assert len(p_num) == 1
image_tensor = model.process_images(image, model.config).to(
dtype=model.dtype, device="cuda"
)
if audio_path:
qs = DEFAULT_IMAGE_TOKEN * p_num[0] + "\n" + qs + DEFAULT_AUDIO_TOKEN
else:
qs = DEFAULT_IMAGE_TOKEN * p_num[0] + "\n" + qs
modality = "image"
else:
image_tensor = torch.zeros((1, 3, 448, 448)).to(dtype=model.dtype, device="cuda")
if audio_path:
qs = qs + DEFAULT_AUDIO_TOKEN
modality = "lang"
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt(modality)
if audio_path:
input_ids = (
tokenizer_image_audio_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.cuda()
)
else:
input_ids = (
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.cuda()
)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
start_time = time.time()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
audios=audios,
do_sample=False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
infer_time = time.time() - start_time
output_ids = output_ids.sequences
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids")
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=False)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
print(outputs)
print(f"Time consume: {infer_time}")