forked from cjlin1/liblinear
-
Notifications
You must be signed in to change notification settings - Fork 1
/
linear.h
99 lines (74 loc) · 3.37 KB
/
linear.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#ifndef _LIBLINEAR_H
#define _LIBLINEAR_H
#ifdef __cplusplus
extern "C" {
#endif
struct feature_node
{
int index;
double value;
};
struct problem
{
int l, n;
double *y;
struct feature_node **x;
double bias; /* < 0 if no bias term */
};
enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL }; /* solver_type */
typedef enum {OPT_PRECISION, OPT_RECALL, OPT_FMEASURE, OPT_HINGE, OPT_BALANCEDRISK} openset_optimization_t;
struct parameter
{
int solver_type;
/* these are for training only */
double eps; /* stopping criteria */
double C;
int nr_weight;
int *weight_label;
double* weight;
double p;
int do_open; /* do we want to do open-set expansion of base kernel */
openset_optimization_t optimize; /* choice of what to optimize */
bool exaustive_open; /* do we do exaustive optimization for openset.. default is false */
double beta; /* for use in f-measure optimization */
double near_preasure, far_preasure; /* for openset risk preasures */
FILE* vfile; /* for logging verbose stuff during debugging */
char* mfile; /* filename for loading a model to update for openset */
int rejectedID; /* id for rejected classes (-99999 is the default) */
};
struct model
{
struct parameter param;
int nr_class; /* number of classes */
int nr_feature;
double *w;
int *label; /* label of each class */
double bias;
int openset_dim; /* dimension of data for 1-vs-set models, if 1-vs-set then openset_dim=nr_class-1*/
double *alpha, *omega; /* planes offsets for 1-vs-set alpha[openset_dim], omega[openset_dim] */
};
struct model* train(const struct problem *prob, const struct parameter *param);
void cross_validation(const struct problem *prob, const struct parameter *param, int nr_fold, double *target);
double predict_values(const struct model *model_, const struct feature_node *x, double* dec_values);
double predict(const struct model *model_, const struct feature_node *x);
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
int save_model(const char *model_file_name, const struct model *model_);
struct model *load_model(const char *model_file_name);
int get_nr_feature(const struct model *model_);
int get_nr_class(const struct model *model_);
void get_labels(const struct model *model_, int* label);
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx);
double get_decfun_bias(const struct model *model_, int label_idx);
void free_model_content(struct model *model_ptr);
void free_and_destroy_model(struct model **model_ptr_ptr);
void destroy_param(struct parameter *param);
const char *check_parameter(const struct problem *prob, const struct parameter *param);
int check_probability_model(const struct model *model);
int check_regression_model(const struct model *model);
void set_print_string_function(void (*print_func) (const char*));
void openset_analyze_set(const struct problem &prob, struct model *model_, const struct parameter *param);
struct model *convertto_onevset_model(struct model *basemodel, const struct problem *prob, const struct parameter *param); /* takes a model in, generates onevset model from it) */
#ifdef __cplusplus
}
#endif
#endif /* _LIBLINEAR_H */