Require Import Coqlib.
Require Import Errors.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Op.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Values.
Require Import Memory.
Require Import Maps.
Require Import ZSet.
Require Import ListLemma2.
Require Import CommonTactic.
Require Import AuxLemma.
Require Import AuxStateDataType.
Require Import RealParams.
Require Import RefinementTactic.
Require Import PrimSemantics.
Require Import LayerCalculusLemma.
Require Import TacticsForTesting.
Require Import liblayers.logic.PTreeModules.
Require Import liblayers.logic.LayerLogicImpl.
Require Import liblayers.compcertx.Stencil.
Require Import liblayers.compcertx.MakeProgram.
Require Import liblayers.compat.CompatLayers.
Require Import liblayers.compat.CompatGenSem.
Require Import RData.
Require Import TrapHandlerRaw.Layer.
Require Import Constants.
Require Import TrapDispatcher.Layer.
Require Import HypsecCommLib.
Require Import TrapHandlerRaw.Spec.
Local Open Scope Z_scope.
Local Opaque Z.add Z.mul Z.div Z.shiftl Z.shiftr Z.land Z.lor.
Section TrapHandlerRawProofHigh.
Local Open Scope string_scope.
Local Open Scope Z_scope.
Context `{real_params: RealParams}.
Notation HDATA := RData.
Notation LDATA := RData.
Notation HDATAOps := (cdata (cdata_ops := TrapHandlerRaw_ops) HDATA).
Notation LDATAOps := (cdata (cdata_ops := TrapDispatcher_ops) HDATA).
Section WITHMEM.
Context `{Hstencil: Stencil}.
Context `{Hmem: Mem.MemoryModelX}.
Context `{Hmwd: UseMemWithData mem}.
Record relate_RData (f:meminj) (hadt: HDATA) (ladt: LDATA) :=
mkrelate_RData {
id_rel: hadt = ladt
}.
Inductive match_RData: stencil -> HDATA -> mem -> meminj -> Prop :=
| MATCH_RDATA: forall habd m f s, match_RData s habd m f.
Local Hint Resolve MATCH_RDATA.
Global Instance rel_ops: CompatRelOps HDATAOps LDATAOps :=
{
relate_AbData s f d1 d2 := relate_RData f d1 d2;
match_AbData s d1 m f := match_RData s d1 m f;
new_glbl := nil
}.
Global Instance rel_prf: CompatRel HDATAOps LDATAOps.
Proof.
constructor; intros; simpl; trivial.
constructor; inv H; trivial.
Qed.
Section FreshPrim.
Lemma host_hvc_handler_raw_spec_exists:
forall habd habd' labd f
(Hspec: host_hvc_handler_raw_spec habd = Some habd')
(Hrel: relate_RData f habd labd),
exists labd', host_hvc_handler_raw_spec labd = Some labd' /\ relate_RData f habd' labd'.
Proof.
intros. inv Hrel; subst.
eexists; split. eassumption.
constructor; reflexivity.
Qed.
Lemma host_hvc_handler_raw_spec_ref:
compatsim (crel RData RData) (gensem host_hvc_handler_raw_spec) host_hvc_handler_raw_spec_low.
Proof.
Opaque host_hvc_handler_raw_spec.
compatsim_simpl (@match_RData).
exploit host_hvc_handler_raw_spec_exists; eauto 1;
intros (labd' & Hspec & Hrel).
refine_split; repeat (try econstructor; eauto).
Qed.
Lemma host_npt_handler_raw_spec_exists:
forall habd habd' labd f
(Hspec: host_npt_handler_raw_spec habd = Some habd')
(Hrel: relate_RData f habd labd),
exists labd', host_npt_handler_raw_spec labd = Some labd' /\ relate_RData f habd' labd'.
Proof.
intros. inv Hrel; subst.
eexists; split. eassumption.
constructor; reflexivity.
Qed.
Lemma host_npt_handler_raw_spec_ref:
compatsim (crel RData RData) (gensem host_npt_handler_raw_spec) host_npt_handler_raw_spec_low.
Proof.
Opaque host_npt_handler_raw_spec.
compatsim_simpl (@match_RData).
exploit host_npt_handler_raw_spec_exists; eauto 1;
intros (labd' & Hspec & Hrel).
refine_split; repeat (try econstructor; eauto).
Qed.
Lemma host_vcpu_run_handler_raw_spec_exists:
forall habd habd' labd f
(Hspec: host_vcpu_run_handler_raw_spec habd = Some habd')
(Hrel: relate_RData f habd labd),
exists labd', host_vcpu_run_handler_raw_spec labd = Some labd' /\ relate_RData f habd' labd'.
Proof.
intros. inv Hrel; subst.
eexists; split. eassumption.
constructor; reflexivity.
Qed.
Lemma host_vcpu_run_handler_raw_spec_ref:
compatsim (crel RData RData) (gensem host_vcpu_run_handler_raw_spec) host_vcpu_run_handler_raw_spec_low.
Proof.
Opaque host_vcpu_run_handler_raw_spec.
compatsim_simpl (@match_RData).
exploit host_vcpu_run_handler_raw_spec_exists; eauto 1;
intros (labd' & Hspec & Hrel).
refine_split; repeat (try econstructor; eauto).
Qed.
Lemma vm_exit_handler_raw_spec_exists:
forall habd habd' labd f
(Hspec: vm_exit_handler_raw_spec habd = Some habd')
(Hrel: relate_RData f habd labd),
exists labd', vm_exit_handler_raw_spec labd = Some labd' /\ relate_RData f habd' labd'.
Proof.
intros. inv Hrel; subst.
eexists; split. eassumption.
constructor; reflexivity.
Qed.
Lemma vm_exit_handler_raw_spec_ref:
compatsim (crel RData RData) (gensem vm_exit_handler_raw_spec) vm_exit_handler_raw_spec_low.
Proof.
Opaque vm_exit_handler_raw_spec.
compatsim_simpl (@match_RData).
exploit vm_exit_handler_raw_spec_exists; eauto 1;
intros (labd' & Hspec & Hrel).
refine_split; repeat (try econstructor; eauto).
Qed.
End FreshPrim.
End WITHMEM.
End TrapHandlerRawProofHigh.