-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
600 lines (537 loc) · 24.1 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import broyden1 , bisect
class FVMG:
def __init__(self,case,MGType,Courant,Ncells,beta,its):
""""
FVMG: is a finit-volume multigrid solver for the 1-D Euler equations
Test problems:
Subsonic channel flow
Transonic channel flow
Inputs:
case: subsonic or transonic
Ncells: number of grid cells
Courant: Courant number
beta: smoothing factor
MGType: Multigrid type: V cycle or W cycle and number of grids
Output:
Mach, pressure, density, sound speed, energy (exact and numerical)
"""
self.case = case
self.N = Ncells # 95
self.C = Courant
self.beta = beta
self.schedule = FVMG.schedules(self,MGType)
self.gamma = 1.4
self.k2 = 0.5
self.k4 = 1/32
self.file = 'transonic.txt' # only for the transonic
self.its = its
xl = 0
xm = 5
xr = 10
R = 287
T0 = 300
p01 = 100000
self.x , self.dx , self.S , self.Dx , self.dS = FVMG.grid(self,xl,xm,xr)
# Exact solution
if self.case == 'subsonic':
Sstar = 0.8
self.M_ex, T_ex, self.p_ex, rho_ex, a_ex, u_ex, e_ex = FVMG.subsonic(self,R,T0,p01,Sstar)
elif self.case == 'transonic':
xshock = 7
SstarL = 1
self.M_ex, T_ex, self.p_ex, rho_ex, a_ex, u_ex, e_ex = FVMG.transonic(self,xshock,SstarL,T0,p01,R)
Q_ex = np.concatenate((rho_ex[1:-1],
rho_ex[1:-1]*u_ex[1:-1],
e_ex[1:-1]),axis=None)
QS_ex = np.concatenate((rho_ex[1:-1]* self.S[1:-1],
rho_ex[1:-1]*u_ex[1:-1]* self.S[1:-1],
e_ex[1:-1]*self.S[1:-1]),axis=None)
self.R2L,self.R3L = FVMG.GetRiemannInv(self,rho_ex[0],rho_ex[0]*u_ex[0],e_ex[0])[1:]
self.R1R = FVMG.GetRiemannInv(self,rho_ex[-1],rho_ex[-1]*u_ex[-1],e_ex[-1])[0]
rho0 = ((rho_ex[-1]-rho_ex[0])/(xr-xl))*self.x[1:-1] + rho_ex[0]
u0 = ((u_ex[-1]-u_ex[0])/(xr-xl))*self.x[1:-1] + u_ex[0]
e0 = ((e_ex[-1]-e_ex[0])/(xr-xl))*self.x[1:-1] + e_ex[0]
# Initial conditions
QS = np.array([rho0 *self.S[1:-1],
rho0*u0 *self.S[1:-1],
e0 *self.S[1:-1]]).flatten()
# Initial residual
Rnorm = np.sqrt(sum((FVMG.ResidualVector(self,QS))**2))
self.QS1 , self.residuals1 = FVMG.multistage(self,QS,self.its,return_his=True)
self.residuals1.insert(0,Rnorm)
self.residuals1 = self.residuals1 / Rnorm
self.QS2 , self.residuals2 = FVMG.Multigrid(self,QS,self.its,return_his=True)
self.residuals2.insert(0,Rnorm)
self.residuals2 = self.residuals2 / Rnorm
QS = np.copy(self.QS2)
bdyQS = FVMG.extrapolate1st(self,QS)
self.rhoS = np.pad(QS[:self.N],(1,1),'constant',
constant_values=(bdyQS[0],bdyQS[3]))
self.rhouS = np.pad(QS[self.N:2*self.N],(1,1),'constant',
constant_values=(bdyQS[1],bdyQS[4]))
self.eS = np.pad(QS[2*self.N:],(1,1),'constant',
constant_values=(bdyQS[2],bdyQS[5]))
self.pres = FVMG.pressure(self,self.rhoS,self.rhouS,self.eS)/self.S
self.Mach = self.rhouS/self.rhoS/FVMG.sound(self,self.rhoS,self.rhouS,self.eS)
def plotting(self,X,Y,axis,labels,colors,lines, title,
logscale = False,location = 'upper right',lw= 1):
plt.rc('font', family='serif')
plt.rc('font',size=10)
plt.rc('axes',labelsize=10)
fig = plt.figure(figsize = (4,4))
ax = fig.add_subplot(111)
for i, x in enumerate(X):
if logscale:
ax.semilogy(Y[i], lines[i], color = colors[i],
label = labels[i], markevery = 2 ,linewidth = lw)
else:
ax.plot(x, Y[i] , lines[i], color = colors[i],
label = labels[i], markevery = 2 ,linewidth = lw)
ax.set_title(title)
ax.set_xlabel(axis[0])
ax.set_ylabel(axis[1])
ax.legend(numpoints = 1, loc = location,fontsize = 9, frameon = False)
fig.tight_layout()
plt.show()
def grid(self,xl, xm, xr):
"""
Computes the grid vector, the grid spacing, the difference operator,
and the channel area
"""
x1 = np.linspace(xl, xm, num=int((self.N - 1) / 2 + 2), endpoint=True) # including xl
x2 = np.linspace(xm, xr, num=int((self.N - 1) / 2 + 2), endpoint=True) # including xr
x = np.concatenate((x1[:-1], x2), axis=None) # including xl and xr
dx = x[1] - x[0] # spacing
# Channel area variation
S1 = 1 + 1.5 * (1 - x1[:-1] / 5) ** 2
S2 = 1 + 0.5 * (1 - x2 / 5) ** 2
S = np.concatenate((S1, S2), axis=None)
Dx1 = (np.diag(np.ones(self.N - 1), 1) + np.diag(-np.ones(self.N - 1), -1)) / 2 / dx
Dx = np.block([[Dx1, np.zeros((self.N, self.N)), np.zeros((self.N, self.N))],
[np.zeros((self.N, self.N)), Dx1, np.zeros((self.N, self.N))],
[np.zeros((self.N, self.N)), np.zeros((self.N, self.N)), Dx1]])
dS = Dx1 @ S[1:-1]
dS[0] -= S[0] / 2 / dx
dS[-1] += S[-1] / 2 / dx
return x, dx, S, Dx, dS
def Evector(self,Q):
"""
Computes vector E given the vector Q
"""
N = int(len(Q)/3)
P = FVMG.pressure(self,Q[:N],Q[N:2*N],Q[2*N:])
E = np.empty(np.shape(Q))
E[:N] = Q[N:2*N]
E[N:2*N] = Q[N:2*N]**2/Q[:N]+P
E[2*N:] = Q[N:2*N]/Q[:N]*(Q[2*N:]+P)
return E
def Fvector(self,QS):
"""
Compute the source term F given QS
"""
M = int(len(QS)/3)
dS = FVMG.RestrictdS(self,M)
S = FVMG.RestrictS(self,M)
P = FVMG.pressure(self,QS[:M],QS[M:2*M],QS[2*M:]) /S[1:-1]
F = np.zeros(3*M)
F[M:2*M] = P * dS
return F
def D_x(self,N):
"""
Make Dx in block form
"""
Dx1 = (np.diag(np.ones(N-1),1)+np.diag(-np.ones(N-1),-1))/2/self.dx
return np.block([[Dx1,np.zeros((N,N)),np.zeros((N,N))],
[np.zeros((N,N)),Dx1,np.zeros((N,N))],
[np.zeros((N,N)),np.zeros((N,N)),Dx1]])
def ResidualVector(self,QS,P=0):
"""
Construct the residual vector given QS
"""
M = int(len(QS)/3)
bdyQS = FVMG.extrapolate1st(self,QS)
D = FVMG.ArtifDiss(self,QS,*bdyQS)
return - FVMG.D_x(self,M) @ FVMG.Evector(self,QS) - FVMG.BdyDiffE(self,*bdyQS,M) + FVMG.Fvector(self,QS) + D + P
def RestrictS(self,M):
R = np.zeros((M+2,self.N+2))
skip = int((self.N+1)/(M+1))
for i in range(M+2):
R[i,i*skip] = 1
return R@ self.S
def RestrictdS(self,M):
R = np.zeros((M,self.N))
skip = int((self.N+1)/(M+1))
if skip ==1:
R = np.identity(M)
else:
for i in range(M):
R[i,i*skip+1] = 1
return R @ self.dS
def ArtifDiss(self,QS,QS1L,QS2L,QS3L,QS1R,QS2R,QS3R):
"""
Artificial dissipation routine. Computes the second and fourth order
dissipation terms
"""
M = int(len(QS)/3)
S = FVMG.RestrictS(self,M)
rho = np.pad(QS[:M],(1,1),'constant',
constant_values=(QS1L,QS1R)) /S
rhou = np.pad(QS[M:2*M],(1,1),'constant',
constant_values=(QS2L,QS2R)) /S
e = np.pad(QS[2*M:],(1,1),'constant',
constant_values=(QS3L,QS3R)) /S
P = FVMG.pressure(self,rho,rhou,e)
a = FVMG.sound(self,rho,rhou,e)
Y = np.pad(abs((P[2:]-2*P[1:-1]+P[:-2])/(P[2:]+2*P[1:-1]+P[:-2])),
(2,2),'constant',constant_values=(0, 0))
eps2 = self.k2*np.maximum.reduce([Y[2:],Y[1:-1],Y[:-2]])
eps4 = np.maximum(np.zeros(M+2),self.k4-eps2)
# Second order dissipation term D2
C = eps2*(abs(rhou/rho) + a)*S
C1 = C[1:-1]+C[2:]
C2 = C[1:-1]+C[:-2]
C3 = C[2:]+2*C[1:-1]+C[:-2]
D2 = np.array([(C1*rho[2:] + C2*rho[:-2] -C3*rho[1:-1]),
(C1*rhou[2:] + C2*rhou[:-2] -C3*rhou[1:-1]),
(C1*e[2:] + C2*e[:-2] -C3*e[1:-1])]).flatten() /2/ self.dx
# Fourth order dissipation term D4
C = eps4*(abs(rhou/rho) + a)*S
C1 = C[1:-1]+C[2:]
C2 = C[1:-1]+C[:-2]
C3 = 4*C[1:-1]+C[:-2]+3*C[2:]
C4 = 4*C[1:-1]+3*C[:-2]+C[2:]
C5 = 6*C[1:-1]+3*C[:-2]+3*C[2:]
C4[0] = C[0]+2*C[1]+C[2]
C5[0] = 2*C[0]+5*C[1]+3*C[2]
C3[-1] = C[-1]+2*C[-2]+C[-3]
C5[-1] = 2*C[-1]+5*C[-2]+3*C[-3]
drho = np.empty(M)
drhou = np.empty(M)
de = np.empty(M)
drho[1:-1] = -C1[1:-1]*rho[4:] \
-C2[1:-1]*rho[:-4] \
+C3[1:-1]*rho[3:-1] \
+C4[1:-1]*rho[1:-3] \
-C5[1:-1]*rho[2:-2]
drhou[1:-1] = -C1[1:-1]*rhou[4:] \
-C2[1:-1]*rhou[:-4] \
+C3[1:-1]*rhou[3:-1] \
+C4[1:-1]*rhou[1:-3] \
-C5[1:-1]*rhou[2:-2]
de[1:-1] = -C1[1:-1]*e[4:] \
-C2[1:-1]*e[:-4] \
+C3[1:-1]*e[3:-1] \
+C4[1:-1]*e[1:-3] \
-C5[1:-1]*e[2:-2]
drho[0] = C4[0]*rho[0] \
-C5[0]*rho[1] \
+C3[0]*rho[2] \
-C1[0]*rho[3]
drhou[0] = C4[0]*rhou[0] \
-C5[0]*rhou[1] \
+C3[0]*rhou[2] \
-C1[0]*rhou[3]
de[0] = C4[0]*e[0] \
-C5[0]*e[1] \
+C3[0]*e[2] \
-C1[0]*e[3]
drho[-1] = C3[-1]*rho[-1] \
-C5[-1]*rho[-2] \
+C4[-1]*rho[-3] \
-C2[-1]*rho[-4]
drhou[-1] = C3[-1]*rhou[-1] \
-C5[-1]*rhou[-2] \
+C4[-1]*rhou[-3] \
-C2[-1]*rhou[-4]
de[-1] = C3[-1]*e[-1] \
-C5[-1]*e[-2] \
+C4[-1]*e[-3] \
-C2[-1]*e[-4]
D4 = np.array([drho,drhou,de]).flatten() /2/ self.dx
return D2+D4
def BdyDiffE(self,Q1L,Q2L,Q3L,Q1R,Q2R,Q3R,N):
"""
Boundary vector for difference operator Dx given
Q1, Q2, and Q3 at xL and xR nodes
"""
bcE = np.zeros(3*N)
bcE[0] = -Q2L/2/self.dx
bcE[N-1] = Q2R/2/self.dx
bcE[N] = -((self.gamma-1)*Q3L + (3-self.gamma)*Q2L**2/Q1L/2)/2/self.dx
bcE[2*N-1] = ((self.gamma-1)*Q3R + (3-self.gamma)*Q2R**2/Q1R/2)/2/self.dx
bcE[2*N] = -(self.gamma*Q3L*Q2L/Q1L - (self.gamma-1)*Q2L**3/Q1L**2/2)/2/self.dx
bcE[3*N-1] = (self.gamma*Q3R*Q2R/Q1R - (self.gamma-1)*Q2R**3/Q1R**2/2)/2/self.dx
return bcE
def GetRiemannInv(self,rho,rhou,e):
"""
Rieman invariants where R1 corresponds to u-a,
R2 corresponds to u+a, and R3 to u
"""
u = rhou/rho
R = 2/(self.gamma-1)*FVMG.sound(self,rho,rhou,e)
return u-R, u+R, np.log(FVMG.pressure(self,rho,rhou,e)/rho**self.gamma)
def RiemanntoQ(self,R1,R2,R3):
k = ((self.gamma-1)*(R2-R1)**2 + 2*self.gamma*(R1+R2)**2)/16/self.gamma
Q3 = k*((self.gamma-1)**2*(R2-R1)**2/16/self.gamma/np.e**R3)**(1/(self.gamma-1))
Q1 = Q3/k
Q2 = Q1/2*(R1+R2)
return Q1 , Q2 , Q3
def PermuteForward(self,Q):
N = int(len(Q)/3)
I = np.zeros((3*N,3*N))
for i in range(N):
I[3*i,i],I[3*i+1,i+N],I[3*i+2,i+2*N] = 1,1,1
if len(np.shape(Q))==1: # vector
return I@Q
if len(np.shape(Q))==2: # matrix
return I@Q@I.T
def PermuteBackward(self,Q):
N = int(len(Q)/3)
I = np.zeros((3*N,3*N))
for i in range(N):
I[3*i,i],I[3*i+1,i+N],I[3*i+2,i+2*N] = 1,1,1
if len(np.shape(Q))==1: # vector
return I.T@Q
if len(np.shape(Q))==2: # matrix
return I.T@Q@I
def BuildSmoothing(self,N):
""" Smoothing operator for beta"""
B = (np.diag(np.ones(N)+2*self.beta) - np.diag(self.beta*np.ones(N-1),1)
- np.diag(self.beta*np.ones(N-1),-1))
B[0,0] , B[-1,-1] = 1 , 1
B[0,1] , B[-1,-2] = 0 , 0
Binv = np.linalg.inv(B)
return np.block([[Binv,np.zeros((N,N)),np.zeros((N,N))],
[np.zeros((N,N)),Binv,np.zeros((N,N))],
[np.zeros((N,N)),np.zeros((N,N)),Binv]])
def multistage(self,QS,its,P=0,return_his=False):
"""Multistage timemarching routine"""
QS = np.copy(QS)
if return_his: residuals = []
for i in range(its):
N = int(len(QS)/3)
h = self.C*self.dx/(abs(QS[N:2*N]/QS[:N]) + FVMG.sound(self,QS[:N],QS[N:2*N],QS[2*N:]))
h = np.concatenate((h,h,h), axis=None)
B = FVMG.BuildSmoothing(self,N)
Dx = FVMG.D_x(self,N)
# first stage
bdyQS = FVMG.extrapolate1st(self,QS)
D0 = FVMG.ArtifDiss(self,QS,*bdyQS)
R0 = B@(h*(-Dx@ FVMG.Evector(self,QS) \
- FVMG.BdyDiffE(self,*bdyQS,N) \
+ FVMG.Fvector(self,QS) + D0 + P))
QS1 = QS + 0.25*R0
# second stage
bdyQS1 = FVMG.extrapolate1st(self,QS1)
R1 = B@(h*(-Dx@FVMG.Evector(self,QS1) \
- FVMG.BdyDiffE(self,*bdyQS1,N) \
+ FVMG.Fvector(self,QS1) + D0 + P))
QS2 = QS + R1/6
# third stage
bdyQS2 = FVMG.extrapolate1st(self,QS2) # Get boundary QS values using Riemann extrapolation
D2 = FVMG.ArtifDiss(self,QS2,*bdyQS2)
R2 = B@(h*(-Dx@ FVMG.Evector(self,QS2) \
- FVMG.BdyDiffE(self,*bdyQS2,N) \
+ FVMG.Fvector(self,QS2) \
+ 0.44*D0 + 0.56*D2 + P))
QS3 = QS + 3/8*R2
# fourth stage
bdyQS3 = FVMG.extrapolate1st(self,QS3) # Get boundary QS values using Riemann extrapolation
R3 = B@(h*(-Dx@ FVMG.Evector(self,QS3) \
- FVMG.BdyDiffE(self,*bdyQS3,N) \
+ FVMG.Fvector(self,QS3) \
+ 0.44*D0 + 0.56*D2 + P))
QS4 = QS + 0.5*R3
# fifth stage
bdyQS4 = FVMG.extrapolate1st(self,QS4) # Get boundary QS values using Riemann extrapolation
D4 = FVMG.ArtifDiss(self,QS4,*bdyQS4)
R4 = B@(h*(-Dx@ FVMG.Evector(self,QS4) - FVMG.BdyDiffE(self,*bdyQS4,N) + FVMG.Fvector(self,QS4) + 0.2464*D0 + 0.3136*D2 + 0.44*D4 + P))
QS = QS + R4
if return_his: # return convergence history
residuals.append(np.sqrt(sum((FVMG.ResidualVector(self,QS))**2)))
if return_his: return QS , residuals
else: return QS
def Restrict(self,Q,weighted=False):
# restrict function
a = len(Q)/3
R = np.zeros((int((a-1)/2),int(a)))
if weighted:
for i in range(int((a-1)/2)):
R[i,(i+1)*2-2] = 0.25
R[i,(i+1)*2] = 0.25
R[i,(i+1)*2-1] = 0.5
else:
for i in range(int((a-1)/2)):
R[i,(i+1)*2-1] = 1
size = np.shape(R)
R = np.block([[R,np.zeros(size),np.zeros(size)],
[np.zeros(size),R,np.zeros(size)],
[np.zeros(size),np.zeros(size),R]])
return R@Q
def Prolong(self,Q):
aa = int(len(Q)/3)
a = 2*aa + 1
I = np.zeros((a,aa))
I[0,0]=0.5
I[-1,-1]=0.5
for i in range(1,a-1):
if i%2==1:
I[i,i//2] = 1
elif i%2 ==0:
I[i,int(i/2)] = 0.5
I[i,int(i/2)-1] = 0.5
size = np.shape(I)
I = np.block([[I,np.zeros(size),np.zeros(size)],
[np.zeros(size),I,np.zeros(size)],
[np.zeros(size),np.zeros(size),I]])
return I@Q
def Multigrid(self,QS,its,return_his=False):
"""
Multigrid approach:
V and W cycles are implemented in a single routine
"""
residuals = []
global count
def solve(QS,P):
Q = np.copy(QS)
global count
# Step 1: check if first iteration. If so, save residual
if count == 0:
if return_his:
Q, res = FVMG.multistage(self,Q,1,P=P,return_his=True)
residuals.append(res[0])
else :
Q = FVMG.multistage(self,Q,1,P=P)
R = FVMG.ResidualVector(self,Q,P=P) # compute residual vector
else:
# if we are not on the first iteration, just call the method
Q = FVMG.multistage(self,Q,1,P=P)
R = FVMG.ResidualVector(self,Q,P=P)
# Step 2: restrict r to a coarser grid with N2=(N-1)/2)
Q2 = FVMG.Restrict(self,Q)
P2 = FVMG.Restrict(self,R,weighted=True) - FVMG.ResidualVector(self,Q2)
# Step 3: Solve the problem on the coarse grid
done = False
while not done:
# if next grid is finer, and previous was finer or the same,
# call the method and prolong
if (self.schedule[count+2] == self.schedule[count+1]-1) \
and ((self.schedule[count] == self.schedule[count+1]-1) \
or (self.schedule[count] == self.schedule[count+1])):
count += 1
Q2 = FVMG.multistage(self,Q2,1,P=P2)
done = True
# if next grid is fine, and previous was courser, just prolong
elif (self.schedule[count+2] == self.schedule[count+1]-1) \
and (self.schedule[count] == self.schedule[count+1]+1):
count += 1
done = True
# if next grid is the same, call the method again
elif (self.schedule[count+2] == self.schedule[count+1]):
count += 1
Q2 = FVMG.multistage(self,Q2,1,P=P2)
# if next grid is coarser, call a new round of solve
elif self.schedule[count+2] == self.schedule[count+1]+1:
count += 1
Q2 = solve(Q2,P2)
else:
print('ERROR: Multigrid if statement failed')
break
# Step 4: Prolong the error back to the fine grid and update solution
return Q + FVMG.Prolong(self,Q2- FVMG.Restrict(self,Q))
while True:
count = 0
QS = solve(QS,0)
if residuals[-1]/residuals[0] < 1e-11:
break
if return_his: return QS, residuals
else: return QS
def schedules(self,MGType):
cycles = {"W-4": [1,2,3,4,3,4,3,2,3,4,3,4,3,2,1],
"W-5": [1,2,3,4,5,4,5,4,3,4,5,4,5,4,3,
2,3,4,5,4,5,4,3,4,5,4,5,4,3,2,1],
"W-6": [1,2,3,4,5,6,5,6,5,4,5,6,5,6,5,4,
3,4,5,6,5,6,5,4,3,2,3,4,5,6,5,6,5,4,
3,4,5,6,5,6,5,4,5,6,5,6,5,4,3,2,1],
"V-4": [1,2,3,4,3,2,1],
"V-5": [1,2,3,4,5,4,3,2,1],
"V-6": [1,2,3,4,5,6,5,4,3,2,1]
}
return cycles[MGType]
def extrapolate1st(self,QS):
"""
First order Riemann extrapolation
"""
M = int(len(QS)/3)
e = int((self.N+1)/(M+1))
R11 = FVMG.GetRiemannInv(self,QS[0]/self.S[e],QS[M]/self.S[e],QS[2*M]/self.S[e])[0]
R12 = FVMG.GetRiemannInv(self,QS[1]/self.S[2*e],QS[M+1]/self.S[2*e],QS[2*M+1]/self.S[2*e])[0]
R2M,R3M = FVMG.GetRiemannInv(self,QS[M-1]/self.S[-1-e],QS[2*M-1]/self.S[-1-e],QS[-1]/self.S[-1-e])[1:]
R2M2,R3M2 = FVMG.GetRiemannInv(self,QS[M-2]/self.S[-1-2*e],QS[2*M-2]/self.S[-1-2*e],QS[-2]/self.S[-1-2*e])[1:]
Q1L,Q2L,Q3L = FVMG.RiemanntoQ(self,2*R11-R12,self.R2L,self.R3L)
Q1R,Q2R,Q3R = FVMG.RiemanntoQ(self,self.R1R,2*R2M-R2M2,2*R3M-R3M2)
return [Q1L*self.S[0],Q2L*self.S[0],Q3L*self.S[0],Q1R*self.S[-1],Q2R*self.S[-1],Q3R*self.S[-1]]
def pressure(self,rho,rhou,e):
return (self.gamma-1)*(e-(rhou**2/2/rho))
def sound(self,rho,rhou,e):
return np.sqrt(self.gamma* FVMG.pressure(self,rho,rhou,e)/rho)
def exact(self,M,S, Sstar):
return M*S/Sstar - (2*(1+M**2*(self.gamma-1)/2)/(self.gamma+1))**((self.gamma+1)/(2*(self.gamma-1)))
def subsonic(self,R,T0,p01,Sstar,):
"""
Exact solution of the subsonic nozzle
"""
eqn = lambda M : FVMG.exact(self,M,self.S,Sstar)
M = broyden1(eqn,0.5*np.ones(len(self.S)),verbose=0,
maxiter=1000,f_tol=1E-14)
T = T0/(1+M**2*(self.gamma-1)/2)
p = p01*(1+M**2*(self.gamma-1)/2)**(-self.gamma/(self.gamma-1))
rho = p/R/T
a = np.sqrt(self.gamma*R*T)
u = M*a
e = p/(self.gamma-1) + rho*u**2/2
return M , T , p , rho , a , u , e
def transonic(self,xshock,SstarL,T0,p01,R):
"""
Exact solution of the transonic case
"""
def exactsol(M,S, Sstar):
gamma = 1.4
return M*S/Sstar - (2*(1+M**2*(gamma-1)/2)/(gamma+1))**((gamma+1)/(2*(gamma-1)))
xshocki = np.where((abs(self.x-xshock))==min(abs(self.x-xshock)))[0][0]
transi = np.where((abs(self.S-SstarL))==min(abs(self.S-SstarL)))[0][0]
M = np.empty(len(self.S))
T = np.empty(len(self.S))
p = np.empty(len(self.S))
for i in range(transi):
M[i] = bisect(exactsol,0,1,args=(self.S[i],SstarL),xtol=1e-12,
maxiter=1000)
for i in range(xshocki-transi):
M[i+transi] = bisect(exactsol,1,2,args=(self.S[i+transi],SstarL),
xtol=1e-12,maxiter=1000)
T[:xshocki] = T0/(1+M[:xshocki]**2*(self.gamma-1)/2)
p[:xshocki] = p01*(1+M[:xshocki]**2*(self.gamma-1)/2)**(-self.gamma/(self.gamma-1))
ML = M[xshocki-1]
T0R = T0
p0L = p01
p0R = p0L*(((self.gamma+1)*ML**2/(2+(self.gamma-1)*ML**2))**(self.gamma/(self.gamma-1))) \
/((2*self.gamma*ML**2/(self.gamma+1) - (self.gamma-1)/(self.gamma+1))**(1/(self.gamma-1)))
rho01 = p01/R/T0
rho0R = p0R/R/T0
a01 = np.sqrt(self.gamma*p01/rho01)
a0R = np.sqrt(self.gamma*p0R/rho0R)
rhostarLastarL = rho01*a01*(2/(self.gamma+1))**((self.gamma+1)/2/(self.gamma-1))
rhostarRastarR = rho0R*a0R*(2/(self.gamma+1))**((self.gamma+1)/2/(self.gamma-1))
SstarR = SstarL*rhostarLastarL/rhostarRastarR
for i in range(len(self.S)-xshocki):
M[i+xshocki] = bisect(exactsol,0,1,args=(self.S[i+xshocki],SstarR),
xtol=1e-12,maxiter=1000)
T[xshocki:] = T0R/(1+M[xshocki:]**2*(self.gamma-1)/2)
p[xshocki:] = p0R*(1+M[xshocki:]**2*(self.gamma-1)/2)**(-self.gamma/(self.gamma-1))
rho = p/R/T
a = np.sqrt(self.gamma*R*T)
u = M*a
e = p/(self.gamma-1) + rho*u**2/2
return M , T , p , rho , a , u , e