-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_pretrain.py
262 lines (225 loc) · 11 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import datetime
import setproctitle
import numpy as np
import time
import json
import os
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from models.dataloader_mac import YT18Dataset, K400Dataset
import timm.optim.optim_factory as optim_factory
import models.video_mac as video_mac
from engine_pretrain import train_one_epoch
from tools import utils
from tools.utils import NativeScalerWithGradNormCount as NativeScaler
from tools.utils import str2bool
def get_args_parser():
parser = argparse.ArgumentParser('Video-MAC pre-training', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Per GPU batch size')
parser.add_argument('--epochs', default=800, type=int)
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--update_freq', default=1, type=int,
help='gradient accumulation step')
parser.add_argument('--use_amp', type=str2bool, default=False)
parser.add_argument('--use_wandb', type=str2bool, default=False)
# Model parameters
parser.add_argument('--model', default='convnets', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='image input size')
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--patch_size', default=32, type=int,
help='Patch size')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=True)
parser.add_argument('--decoder_depth', type=int, default=1)
parser.add_argument('--decoder_embed_dim', type=int, default=512)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
# Dataset parameters
parser.add_argument('--data_path', default='/data/imagenet', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--auto_resume', type=str2bool, default=True)
parser.add_argument('--save_ckpt', type=str2bool, default=True)
parser.add_argument('--save_ckpt_freq', default=5, type=int)
parser.add_argument('--save_ckpt_num', default=10, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=16, type=int)
parser.add_argument('--pin_mem', type=str2bool, default=True,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', type=str2bool, default=False)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# loss balance weight gamma
parser.add_argument(
"--gamma", type=float, default=1.0, help="loss balance weight gamma"
)
# For target encoder
parser.add_argument(
"--momentum_target",
default=0.996,
type=float,
help="""Base EMA
parameter for teacher update. The value is increased to 1
during training with cosine schedule.
We recommend setting a higher value with small batches:
for example use 0.9995 with batch size of 256.""",
)
return parser
def main(args):
# set name
setproctitle.setproctitle("Video-MAC")
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# video dataset
if 'yt18' in args.data_path or 'ytb18' in args.data_path:
dataset_train = YT18Dataset(args.input_size, os.path.join(args.data_path, 'train'))
elif 'k400' in args.data_path:
dataset_train = K400Dataset(args.input_size, os.path.join(args.data_path, 'train'))
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed,
)
print("Sampler_train = %s" % str(sampler_train))
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
# log_writer = SummaryWriter(log_dir=args.log_dir)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# define the model
model_online = video_mac.__dict__[args.model](
mask_ratio=args.mask_ratio,
decoder_depth=args.decoder_depth,
decoder_embed_dim=args.decoder_embed_dim,
norm_pix_loss=args.norm_pix_loss,
patch_size=args.patch_size,
compute_loss=True)
model_target = video_mac.__dict__[args.model](
mask_ratio=args.mask_ratio,
decoder_depth=args.decoder_depth,
decoder_embed_dim=args.decoder_embed_dim,
norm_pix_loss=args.norm_pix_loss,
patch_size=args.patch_size,
compute_loss=False)
model_online.to(device)
model_target.to(device)
online_without_ddp = model_online
target_without_ddp = model_target
n_parameters = sum(p.numel() for p in model_online.parameters() if p.requires_grad)
print("Online Model = %s" % str(online_without_ddp))
print("Target Model = %s" % str(target_without_ddp))
# print('number of params:', n_parameters)
eff_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(dataset_train) // eff_batch_size
if args.lr is None:
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.update_freq)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model_online = torch.nn.parallel.DistributedDataParallel(model_online, device_ids=[args.gpu], find_unused_parameters=False)
online_without_ddp = model_online.module
target_without_ddp.load_state_dict(model_online.module.state_dict())
else:
target_without_ddp.load_state_dict(model_online.state_dict())
for param in model_target.parameters():
param.requires_grad = False
print(f"Online and Target are built: they are both {args.model} network.")
param_groups = optim_factory.param_groups_weight_decay(online_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
# momentum parameter is increased to 1. during training with a cosine
# schedule
momentum_schedule = utils.cosine_scheduler(
args.momentum_target, 1, args.epochs, len(data_loader_train)
)
utils.auto_load_model_distill(
args=args, model_online=model_online, online_without_ddp=online_without_ddp,
model_target=model_target, target_without_ddp=target_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
train_stats = train_one_epoch(
model_online, model_target, target_without_ddp,
data_loader_train, optimizer, device, epoch,
loss_scaler, momentum_schedule, log_writer=log_writer,
args=args
)
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model_distill(
args=args,
model_online=model_online,
online_without_ddp=online_without_ddp,
model_target=model_target,
target_without_ddp=target_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)