-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcar.py
189 lines (150 loc) · 5.84 KB
/
car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from config_variables import *
import pygame as py
import os
from math import *
from random import random
from road import *
import numpy as np
from vect2d import vect2d
class Car:
x = 0
y = 0
def __init__(self, x, y, turn):
self.x = x
self.y = y
self.rot = turn
self.rot = 0
self.vel = MAX_VEL/2
self.acc = 0
self.initImgs()
self.commands = [0, 0, 0, 0]
def initImgs(self):
img_names = ["yellow_car.png", "red_car.png",
"blu_car.png", "green_car.png"]
name = img_names[floor(random()*len(img_names)) % len(img_names)]
self.img = py.transform.rotate(py.transform.scale(py.image.load(
os.path.join("imgs", name)).convert_alpha(), (120, 69)), -90)
self.brake_img = py.transform.rotate(py.transform.scale(py.image.load(
os.path.join("imgs", "brakes.png")).convert_alpha(), (120, 69)), -90)
def detectCollision(self, road):
# get mask
mask = py.mask.from_surface(self.img)
(width, height) = mask.get_size()
for v in [road.pointsLeft, road.pointsRight]:
for p in v:
x = p.x - self.x + width/2
y = p.y - self.y + height/2
try:
if mask.get_at((int(x), int(y))):
return True
except IndexError as error:
continue
return False
def getInputs(self, world, road):
sensors = []
for k in range(8):
sensors.append(SENSOR_DISTANCE)
sensorsEquations = getSensorEquations(self, world)
for v in [road.pointsLeft, road.pointsRight]:
i = road.bottomPointIndex
while v[i].y > self.y - SENSOR_DISTANCE:
next_index = getPoint(i+1, NUM_POINTS*road.num_ctrl_points)
getDistance(world, self, sensors,
sensorsEquations, v[i], v[next_index])
i = next_index
if CAR_DBG:
for k, s in enumerate(sensors):
omega = radians(self.rot + 45*k)
dx = s * sin(omega)
dy = - s * cos(omega)
if s < SENSOR_DISTANCE:
py.draw.circle(world.win, RED, world.getScreenCoords(
self.x+dx, self.y+dy), 6)
for s in range(len(sensors)):
sensors[s] = 1 - sensors[s]/SENSOR_DISTANCE
return sensors
def move(self, road, t):
self.acc = FRICTION
if decodeCommand(self.commands, ACC):
self.acc = ACC_STRENGHT
if decodeCommand(self.commands, BRAKE):
self.acc = -BRAKE_STREGHT
if decodeCommand(self.commands, TURN_LEFT):
self.rot -= TURN_VEL
if decodeCommand(self.commands, TURN_RIGHT):
self.rot += TURN_VEL
timeBuffer = 500
if MAX_VEL_REDUCTION == 1 or t >= timeBuffer:
max_vel_local = MAX_VEL
else:
ratio = MAX_VEL_REDUCTION + (1 - MAX_VEL_REDUCTION)*(t/timeBuffer)
max_vel_local = MAX_VEL * ratio
self.vel += self.acc
if self.vel > max_vel_local:
self.vel = max_vel_local
if self.vel < 0:
self.vel = 0
self.x = self.x + self.vel * sin(radians(self.rot))
self.y = self.y - self.vel * cos(radians(self.rot))
return (self.x, self.y)
def draw(self, world):
screen_position = world.getScreenCoords(self.x, self.y)
rotated_img = py.transform.rotate(self.img, -self.rot)
new_rect = rotated_img.get_rect(center=screen_position)
world.win.blit(rotated_img, new_rect.topleft)
if decodeCommand(self.commands, BRAKE):
rotated_img = py.transform.rotate(self.brake_img, -self.rot)
new_rect = rotated_img.get_rect(center=screen_position)
world.win.blit(rotated_img, new_rect.topleft)
# ======================== LOCAL FUNCTIONS ==========================
def getSensorEquations(self, world):
eq = []
for i in range(4):
omega = radians(self.rot + 45*i)
dx = SENSOR_DISTANCE * sin(omega)
dy = - SENSOR_DISTANCE * cos(omega)
if CAR_DBG:
py.draw.lines(world.win, GREEN, False, [world.getScreenCoords(
self.x+dx, self.y+dy), world.getScreenCoords(self.x-dx, self.y-dy)], 2)
coef = getSegmentEquation(self, vect2d(x=self.x+dx, y=self.y+dy))
eq.append(coef)
return eq
def getSegmentEquation(p, q):
a = p.y - q.y
b = q.x - p.x
c = p.x*q.y - q.x*p.y
return (a, b, c)
def getDistance(world, car, sensors, sensorsEquations, p, q):
(a2, b2, c2) = getSegmentEquation(p, q)
for i, (a1, b1, c1) in enumerate(sensorsEquations):
if a1 != a2 or b1 != b2:
d = b1*a2 - a1*b2
if d == 0:
continue
y = (a1*c2 - c1*a2)/d
x = (c1*b2 - b1*c2)/d
if (y-p.y)*(y-q.y) > 0 or (x-p.x)*(x-q.x) > 0:
continue
else:
(x, y) = (abs(p.x-q.x), abs(p.y-q.y))
dist = ((car.x - x)**2 + (car.y - y)**2)**0.5
omega = car.rot + 45*i
alpha = 90 - degrees(atan2(car.y - y, x-car.x))
if cos(alpha)*cos(omega)*100 + sin(alpha)*sin(omega)*100 > 0:
index = i
else:
index = i + 4
if dist < sensors[index]:
sensors[index] = dist
def decodeCommand(commands, type):
if commands[type] > ACTIVATION_TRESHOLD:
if type == ACC and commands[type] > commands[BRAKE]:
return True
elif type == BRAKE and commands[type] > commands[ACC]:
return True
elif type == TURN_LEFT and commands[type] > commands[TURN_RIGHT]:
return True
elif type == TURN_RIGHT and commands[type] > commands[TURN_LEFT]:
return True
return False
# ----