forked from yining043/TSP-improve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
322 lines (251 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import time
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader
from utils import move_to, clip_grad_norms, get_inner_model
from utils.logger import log_to_screen, log_to_tb_train, log_to_tb_val
def rollout(problem, model, x_input, batch, solution, value, opts, T, do_sample = False, record = False):
solutions = solution.clone()
best_so_far = solution.clone()
cost = value
exchange = None
best_val = cost.clone()
improvement = []
reward = []
solution_history = [best_so_far]
for t in tqdm(range(T), disable = opts.no_progress_bar, desc = 'rollout', bar_format='{l_bar}{bar:20}{r_bar}{bar:-20b}'):
exchange, _ = model( x_input,
solutions,
exchange,
do_sample = do_sample)
# new solution
solutions = problem.step(solutions, exchange)
solutions = move_to(solutions, opts.device)
obj = problem.get_costs(batch, solutions)
#calc improve
improvement.append(cost - obj)
cost = obj
#calc reward
new_best = torch.cat((best_val[None,:], obj[None,:]),0).min(0)[0]
r = best_val - new_best
reward.append(r)
#update best solution
best_val = new_best
best_so_far[(r > 0)] = solutions[(r > 0)]
#record solutions
if record: solution_history.append(best_so_far.clone())
return best_val.view(-1,1), torch.stack(improvement,1), torch.stack(reward,1), None if not record else torch.stack(solution_history,1)
def validate(problem, model, val_dataset, tb_logger, opts, _id = None):
# Validate mode
print('\nValidating...', flush=True)
model.eval()
init_value = []
best_value = []
improvement = []
reward = []
time_used = []
for batch in tqdm(DataLoader(val_dataset, batch_size = opts.eval_batch_size),
disable = opts.no_progress_bar or opts.val_size == opts.eval_batch_size,
desc = 'validate', bar_format='{l_bar}{bar:20}{r_bar}{bar:-20b}'):
#initial solutions
initial_solution = move_to(
problem.get_initial_solutions(opts.init_val_met, batch), opts.device)
if problem.NAME == 'tsp':
x = batch
else:
assert False, "Unsupported problem: {}".format(problem.NAME)
x_input = move_to(x, opts.device) # batch_size, graph_size, 2
batch = move_to(batch, opts.device) # batch_size, graph_size, 2
initial_value = problem.get_costs(batch, initial_solution)
init_value.append(initial_value)
# run the model
s_time = time.time()
bv, improve, r, _ = rollout(problem,
model,
x_input,
batch,
initial_solution,
initial_value,
opts,
T=opts.T_max,
do_sample = True)
duration = time.time() - s_time
time_used.append(duration)
best_value.append(bv.clone())
improvement.append(improve.clone())
reward.append(r.clone())
best_value = torch.cat(best_value,0)
improvement = torch.cat(improvement,0)
reward = torch.cat(reward,0)
init_value = torch.cat(init_value,0).view(-1,1)
time_used = torch.tensor(time_used)
# log to screen
log_to_screen(time_used,
init_value,
best_value,
reward,
improvement,
batch_size = opts.eval_batch_size,
dataset_size = len(val_dataset),
T = opts.T_max)
# log to tb
if(not opts.no_tb):
log_to_tb_val(tb_logger,
time_used,
init_value,
best_value,
reward,
improvement,
batch_size = opts.eval_batch_size,
dataset_size = len(val_dataset),
T = opts.T_max,
epoch = _id)
# save to file
if _id is not None:
torch.save(
{
'init_value': init_value,
'best_value': best_value,
'improvement': improvement,
'reward': reward,
'time_used': time_used,
},
os.path.join(opts.save_dir, 'validate-{}.pt'.format(_id)))
def train_epoch(problem, model, optimizer, baseline, lr_scheduler, epoch, val_dataset, tb_logger, opts):
# lr_scheduler
lr_scheduler.step(epoch)
print('\n\n')
print("|",format(f" Training epoch {epoch} ","*^60"),"|")
print("Training with lr={:.3e} for run {}".format(optimizer.param_groups[0]['lr'], opts.run_name), flush=True)
step = epoch * (opts.epoch_size // opts.batch_size)
# Generate new training data for each epoch
training_dataset = problem.make_dataset(size=opts.graph_size, num_samples=opts.epoch_size)
training_dataloader = DataLoader(training_dataset, batch_size=opts.batch_size)
# Put model in train mode!
model.train()
# start training
pbar = tqdm(total = (opts.epoch_size // opts.batch_size) * (opts.T_train // opts.n_step) ,
disable = opts.no_progress_bar, desc = f'training',
bar_format='{l_bar}{bar:20}{r_bar}{bar:-20b}')
for batch_id, batch in enumerate(training_dataloader):
train_batch(
problem,
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts,
pbar
)
step += 1
pbar.close()
if (opts.checkpoint_epochs != 0 and epoch % opts.checkpoint_epochs == 0) or epoch == opts.n_epochs - 1:
print('Saving model and state...')
torch.save(
{
'model': get_inner_model(model).state_dict(),
'optimizer': optimizer.state_dict(),
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state_all(),
'baseline': baseline.state_dict()
},
os.path.join(opts.save_dir, 'epoch-{}.pt'.format(epoch))
)
validate(problem, model, val_dataset, tb_logger, opts, _id = epoch)
def train_batch(
problem,
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts,
pbar
):
solution = move_to(
problem.get_initial_solutions(opts.init_val_met, batch), opts.device)
if problem.NAME == 'tsp':
x = batch
else:
assert False, "Unsupported problem: {}".format(problem.NAME)
x_input = move_to(x, opts.device) # batch_size, graph_size, 2
batch = move_to(batch, opts.device) # batch_size, graph_size, 2
exchange = None
#update best_so_far
best_so_far = problem.get_costs(batch, solution)
initial_cost = best_so_far.clone()
# params
gamma = opts.gamma
n_step = opts.n_step
T = opts.T_train
t = 0
while t < T:
baseline_val = []
baseline_val_detached = []
log_likelihood = []
reward = []
t_s = t
total_cost = 0
exchange_history = []
while t - t_s < n_step and not (t == T):
# get estimated value from baseline
bl_val_detached, bl_val = baseline.eval(x_input, solution)
baseline_val_detached.append(bl_val_detached)
baseline_val.append(bl_val)
# get model output
exchange, log_lh = model( x_input,
solution,
exchange,
do_sample = True)
exchange_history.append(exchange)
log_likelihood.append(log_lh)
# state transient
solution = problem.step(solution, exchange)
solution = move_to(solution, opts.device)
# calc reward
cost = problem.get_costs(batch, solution)
total_cost = total_cost + cost
best_for_now = torch.cat((best_so_far[None,:], cost[None,:]),0).min(0)[0]
reward.append(best_so_far - best_for_now)
best_so_far = best_for_now
# next
t = t + 1
# Get discounted R
Reward = []
total_cost = total_cost / (t-t_s)
reward_reversed = reward[::-1]
next_return, _ = baseline.eval(x_input, solution)
for r in range(len(reward_reversed)):
R = next_return * gamma + reward_reversed[r]
Reward.append(R)
next_return = R
Reward = torch.stack(Reward[::-1], 0)
baseline_val = torch.stack(baseline_val,0)
baseline_val_detached = torch.stack(baseline_val_detached,0)
log_likelihood = torch.stack(log_likelihood,0)
# calculate loss
criteria = torch.nn.MSELoss()
baseline_loss = criteria(Reward, baseline_val)
reinforce_loss = - ((Reward - baseline_val_detached)*log_likelihood).mean()
loss = baseline_loss + reinforce_loss
# update gradient step
optimizer.zero_grad()
loss.backward()
#Clip gradient norms and get (clipped) gradient norms for logging
grad_norms = clip_grad_norms(optimizer.param_groups, opts.max_grad_norm)
optimizer.step()
# Logging to tensorboard
if(not opts.no_tb):
current_step = int(step * T / n_step + t // n_step)
if current_step % int(opts.log_step) == 0:
log_to_tb_train(tb_logger, optimizer, model, baseline, total_cost, grad_norms, reward,
exchange_history, reinforce_loss, baseline_loss, log_likelihood, initial_cost, current_step)
pbar.update(1)