Skip to content

Latest commit

 

History

History
283 lines (201 loc) · 11.5 KB

quickstart_en.md

File metadata and controls

283 lines (201 loc) · 11.5 KB

PaddleOCR Quick Start

1. Installation

1.1 Install PaddlePaddle

If you do not have a Python environment, please refer to Environment Preparation.

  • If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install

    python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
  • If you have no available GPU on your machine, please run the following command to install the CPU version

    python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

For more software version requirements, please refer to the instructions in Installation Document for operation.

1.2 Install PaddleOCR Whl Package

pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+
  • For windows users: If you getting this error OSError: [WinError 126] The specified module could not be found when you install shapely on windows. Please try to download Shapely whl file here.

    Reference: Solve shapely installation on windows

  • For layout analysis users, run the following command to install Layout-Parser

    pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl

2. Easy-to-Use

2.1 Use by Command Line

PaddleOCR provides a series of test images, click here to download, and then switch to the corresponding directory in the terminal

cd /path/to/ppocr_img

If you do not use the provided test image, you can replace the following --image_dir parameter with the corresponding test image path

2.1.1 Chinese and English Model

  • Detection, direction classification and recognition: set the parameter--use_gpu false to disable the gpu device

    paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en --use_gpu false

    Output will be a list, each item contains bounding box, text and recognition confidence

    [[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
    [[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
    [[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
    ......
  • Only detection: set --rec to false

    paddleocr --image_dir ./imgs_en/img_12.jpg --rec false

    Output will be a list, each item only contains bounding box

    [[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
    [[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
    [[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
    ......
  • Only recognition: set --det to false

    paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en

    Output will be a list, each item contains text and recognition confidence

    ['PAIN', 0.990372]

If you need to use the 2.0 model, please specify the parameter --version PP-OCR, paddleocr uses the 2.1 model by default(--versioin PP-OCRv2). More whl package usage can be found in whl package

2.1.2 Multi-language Model

Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.

paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en
The result is a list, each item contains a text box, text and recognition confidence
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......

Commonly used multilingual abbreviations include

Language Abbreviation Language Abbreviation Language Abbreviation
Chinese & English ch French fr Japanese japan
English en German german Korean korean
Chinese Traditional chinese_cht Italian it Russian ru

A list of all languages and their corresponding abbreviations can be found in Multi-Language Model Tutorial

2.1.3 Layout Analysis

Layout analysis refers to the division of 5 types of areas of the document, including text, title, list, picture and table. For the first three types of regions, directly use the OCR model to complete the text detection and recognition of the corresponding regions, and save the results in txt. For the table area, after the table structuring process, the table picture is converted into an Excel file of the same table style. The picture area will be individually cropped into an image.

To use the layout analysis function of PaddleOCR, you need to specify --type=structure

paddleocr --image_dir=../doc/table/1.png --type=structure
  • Results Format

    The returned results of PP-Structure is a list composed of a dict, an example is as follows

    [
      {   'type': 'Text',
          'bbox': [34, 432, 345, 462],
          'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                    [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
      }
    ]

    The description of each field in dict is as follows

    Parameter Description
    type Type of image area
    bbox The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y]
    res OCR or table recognition result of image area。
    Table: HTML string of the table;
    OCR: A tuple containing the detection coordinates and recognition results of each single line of text
  • Parameter Description:

    Parameter Description Default value
    output The path where excel and recognition results are saved ./output/table
    table_max_len The long side of the image is resized in table structure model 488
    table_model_dir inference model path of table structure model None
    table_char_type dict path of table structure model ../ppocr/utils/dict/table_structure_dict.txt

2.2 Use by Code

2.2.1 Chinese & English Model and Multilingual Model

  • detection, angle classification and recognition:
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = './imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)


# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

Output will be a list, each item contains bounding box, text and recognition confidence

[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......

Visualization of results

2.2.2 Layout Analysis

import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output/table'
img_path = './table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

font_path = './fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

3. Summary

In this section, you have mastered the use of PaddleOCR whl packages and obtained results.

PaddleOCR is a rich and practical OCR tool library that opens up the whole process of data, model training, compression and inference deployment, so in the next section we will first introduce you to the overview of PaddleOCR, and then clone the PaddleOCR project to start the application journey of PaddleOCR.