-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtinywebgl-ucla.js
executable file
·519 lines (486 loc) · 46.2 KB
/
tinywebgl-ucla.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// tinywebgl_ucla.js - A file that shows how to organize a complete graphics program. It wraps common WebGL commands, math, and web page interactions. By Garett
class Vec extends Float32Array // Vectors of floating point numbers. Vecs can only be created with of(). See the following examples for usage:
{ equals (b) { return this.every( (x,i) => x == b[i] ); } // Example: "Vec.of( 1,0,0 ).equals( Vec.of( 1,0,0 ) )" returns true.
plus (b) { return this.map( (x,i) => x + b[i] ); } // Example: "Vec.of( 1,0,0 ).plus ( Vec.of( 1,0,0 ) )" returns the Vec [ 2,0,0 ].
minus (b) { return this.map( (x,i) => x - b[i] ); } // Example: "Vec.of( 1,0,0 ).minus ( Vec.of( 1,0,0 ) )" returns the Vec [ 0,0,0 ].
mult_pairs (b) { return this.map( (x,i) => x * b[i] ); } // Example: "Vec.of( 1,2,3 ).mult_pairs( Vec.of( 3,2,0 ) )" returns the Vec [ 3,4,0 ].
scale (s) { this.forEach( (x, i, a) => a[i] *= s ); } // Example: "Vec.of( 1,2,3 ).scale( 2 )" overwrites the Vec with [ 2,4,6 ].
times (s) { return this.map( x => s*x ); } // Example: "Vec.of( 1,2,3 ).times( 2 )" returns the Vec [ 2,4,6 ].
randomized (s) { return this.map( x => x + s*(Math.random()-.5) ); } // Returns this Vec with a random vector added, with a maximum scale of s.
mix (b, s) { return this.map( (x,i) => (1-s)*x + s*b[i] ); } // Example: "Vec.of( 0,2,4 ).mix( Vec.of( 10,10,10 ), .5 )" returns the Vec [ 5,6,7 ].
norm () { return Math.sqrt( this.dot( this ) ); } // Example: "Vec.of( 1,2,3 ).norm()" returns the square root of 15.
normalized () { return this.times( 1/this.norm() ); } // Example: "Vec.of( 4,4,4 ).normalized()" returns the Vec [ sqrt(3), sqrt(3), sqrt(3) ]
normalize () { this.scale( 1/this.norm() ); } // Example: "Vec.of( 4,4,4 ).normalize()" overwrites the Vec with [ sqrt(3), sqrt(3), sqrt(3) ].
dot(b) // Example: "Vec.of( 1,2,3 ).dot( Vec.of( 1,2,3 ) )" returns 15.
{ if( this.length == 3 ) return this[0]*b[0] + this[1]*b[1] + this[2]*b[2]; // Optimized to do the arithmatic manually for array lengths less than 4.
if( this.length == 4 ) return this[0]*b[0] + this[1]*b[1] + this[2]*b[2] + this[3]*b[3];
if( this.length > 4 ) return this.reduce( ( acc, x, i ) => { return acc + x*b[i]; }, 0 );
return this[0]*b[0] + this[1]*b[1]; // Assume length 2 otherwise.
} // Using cast() saves having to type Vec.of so many times:
static cast( ...args ) { return args.map( x => Vec.from(x) ); } // Convert a list of Array literals into a list of Vecs. Usage: "Vec.cast( [-1,-1,0], [1,-1,0], [-1,1,0] )"
to3() { return Vec.of( this[0], this[1], this[2] ); } // Use only on 4x1 Vecs to truncate them. Example: "Vec.of( 1,2,3,4 ).to3()" returns the Vec [ 1,2,3 ].
to4( isPoint ) { return Vec.of( this[0], this[1], this[2], +isPoint ); } // Use only on 3x1 Vecs to homogenize them. Example: "Vec.of( 1,2,3 ).to4( true or false )" returns the Vec [ 1,2,3, 1 or 0 ].
cross(b) // Use only on 3x1 Vecs. Example: "Vec.of( 1,0,0 ).cross( Vec.of( 0,1,0 ) )" returns the Vec [ 0,0,1 ].
{ return Vec.of( this[1]*b[2] - this[2]*b[1], this[2]*b[0] - this[0]*b[2], this[0]*b[1] - this[1]*b[0] ); }
}
class Mat extends Array // M by N matrices of floats, for matrix and vector math.
{ constructor ( ...args ) { super(0); this.push( ...args ); } // Pass in rows (which can be arrays).
set_identity ( m, n ) { this.length = 0; for( let i = 0; i < m; i++ ) { this.push( new Array(n).fill(0) ); if( i < n ) this[i][i] = 1; } } // Returns an m by n identity matrix.
sub_block( start, end ) { return Mat.from( this.slice( start[0], end[0] ).map( r => r.slice( start[1], end[1] ) ) ); } // Both of start and end must be a [ row, column ].
copy () { return this.map( r => Vec.of ( ...r ) ); }
equals (b) { return this.every( (r,i) => r.every( (x,j) => x == b[i][j] ) ); }
plus (b) { return this.map( (r,i) => r.map ( (x,j) => x + b[i][j] ) ); }
minus (b) { return this.map( (r,i) => r.map ( (x,j) => x - b[i][j] ) ); }
transposed() { return this.map( (r,i) => r.map ( (x,j) => this[j][i] ) ); } // Transposing turns all rows into columns and vice versa.
times (b)
{ const len = b.length; // Usage: M.times(b) where b can be a scalar, a Vec, or another Mat. Returns a new Mat.
if( typeof len === "undefined" ) return this.map( r => r.map( x => b*x ) ); // Mat * scalar case.
const len2 = b[0].length;
if( typeof len2 === "undefined" )
{ let result = Vec.of( ...new Array( this.length ) ); // Mat * Vec case.
for( var r=0; r < len; r++ ) result[r] = b.dot(this[r]);
return result;
}
let result = Mat.from( new Array( this.length ) );
for( let r = 0; r < this.length; r++ ) // Mat * Mat case.
{ result[ r ] = new Array( len2 );
for( let c = 0, sum = 0; c < len2; c++ )
{ result[ r ][ c ] = 0;
for( let r2 = 0; r2 < len; r2++ )
result[ r ][ c ] += this[ r ][ r2 ] * b[ r2 ][ c ];
}
}
return result;
}
pre_multiply (b) { var new_value = b.times( this ); this.length = 0; this.push( ...new_value ); return this; } // Overwrites the matrix with the new product.
post_multiply(b) { var new_value = this.times( b ); this.length = 0; this.push( ...new_value ); return this; } // Overwrites the matrix with the new product.
static flatten_2D_to_1D( M ) // Turn any 2D Array into a row-major 1D array of raw floats.
{ var index = 0, floats = new Float32Array( M.length && M.length * M[0].length );
for( let i = 0; i < M.length; i++ ) for( let j = 0; j < M[i].length; j++ ) floats[ index++ ] = M[i][j];
return floats;
}
}
class Mat4 extends Mat // Special 4x4 matrices that are useful for graphics.
{ static identity() { return Mat.of( [ 1,0,0,0 ], [ 0,1,0,0 ], [ 0,0,1,0 ], [ 0,0,0,1 ] ); };
static rotation( angle, axis ) // Requires a scalar (angle) and a 3x1 Vec (axis)
{ let [ x, y, z ] = axis.normalized(), [ c, s ] = [ Math.cos( angle ), Math.sin( angle ) ], omc = 1.0 - c;
return Mat.of( [ x*x*omc + c, x*y*omc - z*s, x*z*omc + y*s, 0 ],
[ x*y*omc + z*s, y*y*omc + c, y*z*omc - x*s, 0 ],
[ x*z*omc - y*s, y*z*omc + x*s, z*z*omc + c, 0 ],
[ 0, 0, 0, 1 ] );
}
static scale( s ) { return Mat.of( [ s[0], 0, 0, 0 ], // Requires a 3x1 Vec.
[ 0, s[1], 0, 0 ],
[ 0, 0, s[2], 0 ],
[ 0, 0, 0, 1 ] );
}
static translation( t ) { return Mat.of( [ 1, 0, 0, t[0] ], // Requires a 3x1 Vec.
[ 0, 1, 0, t[1] ],
[ 0, 0, 1, t[2] ],
[ 0, 0, 0, 1 ] ); // Note: look_at() assumes the result will used for a camera and stores its result in
} // inverse space. You can also use it to point the basis of any *object* towards
// static look_at( eye, at, up ) { var v = at.minus( eye ).normalized(), // anything but you must re-invert it first. Each input must be 3x1 Vec.
// n = v.minus( up ).normalized(); // ( v is the view-direction vector )
// if( n[0] != n[0] ) throw "Two parallel vectors were given";
// var u = n.cross( v ).normalized().times( -1 ); // ( u is the orthogonalized up vector )
//
// return Mat.of( n.to4( -n.dot( eye ) ),
// u.to4( -u.dot( eye ) ),
// v.to4( -v.dot( eye ) ),
// [ 0, 0, 0, 1 ] );
// }
/* fixed edition */
// Note: look_at() assumes the result will used for a camera and stores its result in
// inverse space. You can also use it to point the basis of any *object* towards
static look_at( eye, at, up ) { let z = at.minus( eye ).normalized(), // anything but you must re-invert it first. Each input must be 3x1 Vec.
x = z.cross( up ).normalized(), // Compute vectors along the requested coordinate axes.
y = x.cross( z ).normalized(); // (y is the "updated" and orthogonalized local y axis.)
if( !x.every( i => i==i ) ) throw "Two parallel vectors were given"; // Check for NaN, indicating a degenerate cross product, which
z.scale( -1 ); // happens if eye == at, or if at minus eye is parallel to up.
return Mat4.translation([ -x.dot( eye ), -y.dot( eye ), -z.dot( eye ) ]).times( Mat.of( x.to4(0), y.to4(0), z.to4(0), Vec.of( 0,0,0,1 ) ) );
}
static orthographic( left, right, bottom, top, near, far ) // Box-shaped view volume for projection.
{ return Mat4.scale( Vec.of( 1/(right - left), 1/(top - bottom), 1/(far - near) ) ).times(
Mat4.translation( Vec.of( -left - right, -top - bottom, -near - far ) ) ) .times(
Mat4.scale( Vec.of( 2, 2, -2 ) ) );
}
static perspective( fov_y, aspect, near, far ) // Frustum-shaped view volume for projection.
{ var f = 1/Math.tan( fov_y/2 ), d = far - near;
return Mat.of( [ f/aspect, 0, 0, 0 ],
[ 0, f, 0, 0 ],
[ 0, 0, -(near+far) / d, -2*near*far / d ],
[ 0, 0, -1, 0 ] );
}
static inverse( m ) // Slow because of the amount of steps; call fewer times when possible.
{ var result = Mat4.identity(), m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3],
m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3],
m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3],
m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
result[ 0 ][ 0 ] = m12 * m23 * m31 - m13 * m22 * m31 + m13 * m21 * m32 - m11 * m23 * m32 - m12 * m21 * m33 + m11 * m22 * m33;
result[ 0 ][ 1 ] = m03 * m22 * m31 - m02 * m23 * m31 - m03 * m21 * m32 + m01 * m23 * m32 + m02 * m21 * m33 - m01 * m22 * m33;
result[ 0 ][ 2 ] = m02 * m13 * m31 - m03 * m12 * m31 + m03 * m11 * m32 - m01 * m13 * m32 - m02 * m11 * m33 + m01 * m12 * m33;
result[ 0 ][ 3 ] = m03 * m12 * m21 - m02 * m13 * m21 - m03 * m11 * m22 + m01 * m13 * m22 + m02 * m11 * m23 - m01 * m12 * m23;
result[ 1 ][ 0 ] = m13 * m22 * m30 - m12 * m23 * m30 - m13 * m20 * m32 + m10 * m23 * m32 + m12 * m20 * m33 - m10 * m22 * m33;
result[ 1 ][ 1 ] = m02 * m23 * m30 - m03 * m22 * m30 + m03 * m20 * m32 - m00 * m23 * m32 - m02 * m20 * m33 + m00 * m22 * m33;
result[ 1 ][ 2 ] = m03 * m12 * m30 - m02 * m13 * m30 - m03 * m10 * m32 + m00 * m13 * m32 + m02 * m10 * m33 - m00 * m12 * m33;
result[ 1 ][ 3 ] = m02 * m13 * m20 - m03 * m12 * m20 + m03 * m10 * m22 - m00 * m13 * m22 - m02 * m10 * m23 + m00 * m12 * m23;
result[ 2 ][ 0 ] = m11 * m23 * m30 - m13 * m21 * m30 + m13 * m20 * m31 - m10 * m23 * m31 - m11 * m20 * m33 + m10 * m21 * m33;
result[ 2 ][ 1 ] = m03 * m21 * m30 - m01 * m23 * m30 - m03 * m20 * m31 + m00 * m23 * m31 + m01 * m20 * m33 - m00 * m21 * m33;
result[ 2 ][ 2 ] = m01 * m13 * m30 - m03 * m11 * m30 + m03 * m10 * m31 - m00 * m13 * m31 - m01 * m10 * m33 + m00 * m11 * m33;
result[ 2 ][ 3 ] = m03 * m11 * m20 - m01 * m13 * m20 - m03 * m10 * m21 + m00 * m13 * m21 + m01 * m10 * m23 - m00 * m11 * m23;
result[ 3 ][ 0 ] = m12 * m21 * m30 - m11 * m22 * m30 - m12 * m20 * m31 + m10 * m22 * m31 + m11 * m20 * m32 - m10 * m21 * m32;
result[ 3 ][ 1 ] = m01 * m22 * m30 - m02 * m21 * m30 + m02 * m20 * m31 - m00 * m22 * m31 - m01 * m20 * m32 + m00 * m21 * m32;
result[ 3 ][ 2 ] = m02 * m11 * m30 - m01 * m12 * m30 - m02 * m10 * m31 + m00 * m12 * m31 + m01 * m10 * m32 - m00 * m11 * m32;
result[ 3 ][ 3 ] = m01 * m12 * m20 - m02 * m11 * m20 + m02 * m10 * m21 - m00 * m12 * m21 - m01 * m10 * m22 + m00 * m11 * m22;
return result.times( 1/( m00*result[0][0] + m10*result[0][1] + m20*result[0][2] + m30*result[0][3] ) ); // Divide by determinant and return.
}
}
class Shape
// Each shape manages lists of its own vertex positions, vertex normals, and texture coordinates per vertex, and can copy them into a buffer in the graphics card's memory.
// IMPORTANT: When you extend the Shape class, your constructor must fill in four arrays: One list enumerating all the vertices' (3x1 Vec) positions, one for
// their (3x1 Vec) normal vectors pointing away from the surface, one for their (2x1 Vec) texture coordinates (the vertex's position in an image's coordinate space,
// where the whole picture spans x and y in the range 0.0 to 1.0), and usually one for indices, a list of index triples defining which three vertices
// belong to each triangle. Call new on a Shape and submit it to your Canvas_Manager object; it will populate its arrays and the GPU buffers will recieve them.
{ constructor() { Object.assign( this, { positions: [], normals: [], texture_coords: [], colors: [], indices: [], indexed: true } ); }
copy_onto_graphics_card( gl ) // Send the completed vertex and index lists to their own buffers in the graphics card.
{ this.graphics_card_buffers = [];
for( var i = 0; i < 4; i++ ) // Create buffers for this shape in the graphics card:
{ this.graphics_card_buffers.push( gl.createBuffer() ); // Store their memory addresses
gl.bindBuffer( gl.ARRAY_BUFFER, this.graphics_card_buffers[i] );
switch(i) {
case 0: gl.bufferData( gl.ARRAY_BUFFER, Mat.flatten_2D_to_1D( this.positions ), gl.STATIC_DRAW ); break;
case 1: gl.bufferData( gl.ARRAY_BUFFER, Mat.flatten_2D_to_1D( this.normals ), gl.STATIC_DRAW ); break;
case 2: gl.bufferData( gl.ARRAY_BUFFER, Mat.flatten_2D_to_1D( this.texture_coords ), gl.STATIC_DRAW ); break;
case 3: gl.bufferData( gl.ARRAY_BUFFER, Mat.flatten_2D_to_1D( this.colors ), gl.STATIC_DRAW ); break; }
}
if( this.indexed )
{ gl.getExtension( "OES_element_index_uint" ); // Load an extension to allow shapes with more vertices than type short can hold
this.index_buffer = gl.createBuffer();
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, this.index_buffer );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, new Uint32Array( this.indices ), gl.STATIC_DRAW );
}
this.gl = gl;
}
draw( graphics_state, model_transform, material, gl = this.gl ) // The same draw() function is used for every shape -
{ if( !this.gl ) throw "This shape's arrays are not copied over to graphics card yet."; // these calls produce different results by varying which
material.shader.activate(); // vertex list in the GPU we consult.
material.shader.update_GPU( graphics_state, model_transform, material );
for( let [ i, it ] of material.shader.g_addrs.shader_attributes.entries() )
if( it.enabled )
{ gl.enableVertexAttribArray( it.index );
gl.bindBuffer( gl.ARRAY_BUFFER, this.graphics_card_buffers[i] ); // Activate the correct buffer.
gl.vertexAttribPointer( it.index, it.size, it.type, it.normalized, it.stride, it.pointer ); // Populate each attribute from the active buffer.
}
else if( it.index >= 0 ) gl.disableVertexAttribArray( it.index );
if( this.indexed )
{ gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, this.index_buffer ); // Run the shaders to draw every triangle now.
gl.drawElements( gl.TRIANGLES, this.indices.length, gl.UNSIGNED_INT, 0 );
}
else gl.drawArrays( gl.TRIANGLES, 0, this.positions.length ); // If no indices were provided, assume the vertices are arranged in triples.
}
normalize_positions() // Enforces a shape to have an average position at the origin and conform to an average distance of 1 from the origin
{ var average_position = Vec.of( 0,0,0 ), average_length = 0;
for( let [i, p] of this.positions.entries() ) average_position = average_position.plus( p.times( 1/this.positions.length ) );
for( let [i, p] of this.positions.entries() ) this.positions[i] = p.minus( average_position );
for( let [i, p] of this.positions.entries() ) average_length += 1/this.positions.length * p.norm();
for( let [i, p] of this.positions.entries() ) this.positions[i] = p.times( 1/average_length );
}
store_containing_basis() // Get the smallest basis aligned with the canonical axes where all points in this shape fall in the range 0 to 1
{ let min_position = Vec.of( 1,1,1 ).times( Infinity ), max_position = Vec.of( 1,1,1 ).times( -Infinity );
for( let p of this.positions ) for( let i = 0; i < 3; i++ )
{ min_position[i] = Math.min( min_position[i], p[i] ); max_position[i] = Math.max( max_position[i], p[i] ); }
this.containing_basis = Mat4.translation( min_position ).times( Mat4.scale( max_position.minus( min_position ) ) );
}
insert_transformed_copy_into( recipient, args, points_transform = Mat4.identity(), positions_only = false ) // For building compound shapes.
{ let temp_shape = new ( this.constructor )( ...args ); // If you try to bypass making a temporary shape and instead directly insert new data into
// the recipient, you'll run into trouble when the recursion tree stops at different depths.
recipient.indices .push( ...temp_shape.indices.map( i => i + recipient.positions.length ) );
// Apply points_transform to all points added during this call:
recipient.positions.push( ...temp_shape.positions.map( p => points_transform.times( p.to4(1) ).to3() ) );
if( positions_only ) return; // Do the same for normals if we want them:
recipient.normals.push( ...temp_shape.normals.map( n => Mat4.inverse( points_transform.transposed() ).times( n.to4(1) ).to3() ) );
recipient.texture_coords.push( ...temp_shape.texture_coords ); // Lastly, append texture coords.
}
cull_zero_area_triangles( threshold = .0001 ) // Useful when automatically building certin shapes where triangles can become degenerate near singularities.
{ let new_positions = [], new_normals = [], new_texture_coords = [], new_colors = [];
if( this.indexed ) return; // TODO: Also handle indexed shapes. Also delete vertex data no longer referenced after indices are culled.
for( var counter = 0; counter < this.positions.length; counter+=3 )
{ const [ p1, p2, p3 ] = this.positions.slice( counter, counter+3 ),
area = .5 * p1.minus(p2).cross( p3.minus(p1) ).norm();
if( area > threshold )
{ new_positions .push( ...this.positions .slice( counter, counter+3 ) );
new_normals .push( ...this.texture_coords.slice( counter, counter+3 ) );
new_texture_coords .push( ...this.normals .slice( counter, counter+3 ) );
new_colors .push( ...this.colors .slice( counter, counter+3 ) );
}
}
this.positions = new_positions; this.normals = new_normals; this.texture_coords = new_texture_coords; this.colors = new_colors;
}
make_flat_shaded_version() // Auto-generate a new class that re-uses any Shape's points, but with new normals generated from flat shading.
{ return class extends this.constructor
{ constructor( ...args ) { super( ...args ); this.duplicate_the_shared_vertices(); this.flat_shade(); }
duplicate_the_shared_vertices()
{ // Prepare an indexed shape for flat shading if it is not ready -- that is, if there are any edges where the same vertices are indexed by both the adjacent
// triangles, and those two triangles are not co-planar. The two would therefore fight over assigning different normal vectors to the shared vertices.
var temp_positions = [], temp_tex_coords = [], temp_indices = [];
for( let [i, it] of this.indices.entries() )
{ temp_positions.push( this.positions[it] ); temp_tex_coords.push( this.texture_coords[it] ); temp_indices.push( i ); }
this.positions = temp_positions; this.indices = temp_indices; this.texture_coords = temp_tex_coords;
}
flat_shade() // Automatically assign the correct normals to each triangular element to achieve flat shading. Affect all
{ // recently added triangles (those past "offset" in the list). Assumes that no vertices are shared across seams.
for( var counter = 0; counter < (this.indexed ? this.indices.length : this.positions.length); counter += 3 ) // Iterate through appropriate triples
{ var indices = this.indexed ? [ this.indices[ counter ], this.indices[ counter + 1 ], this.indices[ counter + 2 ] ] : [ counter, counter + 1, counter + 2 ];
var p1 = this.positions[ indices[0] ], p2 = this.positions[ indices[1] ], p3 = this.positions[ indices[2] ];
var n1 = p1.minus(p2).cross( p3.minus(p1) ).normalized(); // Cross two edge vectors of this triangle together to get the normal
if( n1.times(.1).plus(p1).norm() < p1.norm() ) n1.scale(-1); // Flip the normal if adding it to the triangle brings it closer to the origin.
for( let i of indices ) this.normals[ i ] = Vec.from( n1 ); // Propagate normal to the 3 vertices.
}
}
}
}
}
class Keyboard_Manager // Compact and fixed version of shortcut.js keyboard library on Github; go there for full documentation.
{ constructor() { this.all_shortcuts = {}; this.paused = false; }
add( shortcut_combination, callback, opt )
{ var default_options = { 'type':'keydown', 'propagate':false, 'disable_in_input':true, 'target':document, 'keycode':false }
if(!opt) opt = default_options;
else for(var dfo in default_options) if( typeof opt[dfo] == 'undefined' ) opt[dfo] = default_options[dfo];
var ele = opt.target == 'string' ? document.getElementById(opt.target) : opt.target;
shortcut_combination = shortcut_combination.toLowerCase();
var onkeypress = ( function(e) // On each keypress, this gets called [# of bound keys] times
{ if( this.paused ) return;
e = e || window.event;
if( opt['disable_in_input'] )
{ var element = e.target || e.srcElement || element.parentNode;
if( element.nodeType == 3 ) element = element.parentNode;
if( element.tagName == 'INPUT' || element.tagName == 'TEXTAREA' ) return;
}
var code = e.keyCode || e.which, character = code == 188 ? "," : ( code == 190 ? "." : String.fromCharCode(code).toLowerCase() );
var keycombo = shortcut_combination.split("+"), num_pressed = 0;
var special_keys = {'esc':27, 'escape':27, 'tab':9, 'space':32, 'return' :13, 'enter':13, 'backspace':8,
'pause':19, 'break':19, 'insert':45, 'home':36, 'delete':46, 'end':35, 'page_up':33, 'page_down':34,
'left':37, 'up':38, 'right':39, 'down':40,
'f1':112,'f2':113,'f3':114,'f4':115,'f5':116,'f6':117,'f7':118,'f8':119,'f9':120,'f10':121,'f11':122,'f12':123 }
var modifiers = { shift: { wanted: false, pressed: e.shiftKey },
ctrl : { wanted: false, pressed: e.ctrlKey },
alt : { wanted: false, pressed: e.altKey },
meta : { wanted: false, pressed: e.metaKey } }; // ( Mac specific )
for( let k of keycombo ) // Check if current keycombo in consideration matches the actual keypress
{ modifiers.ctrl .wanted |= ( k == 'ctrl' || k == 'control' && ++num_pressed );
modifiers.shift.wanted |= ( k == 'shift' && ++num_pressed );
modifiers.alt .wanted |= ( k == 'alt' && ++num_pressed );
modifiers.meta .wanted |= ( k == 'meta' && ++num_pressed );
var shift_nums = {"`":"~","1":"!","2":"@","3":"#","4":"$" ,"5":"%","6":"^","7":"&", "8":"*","9":"(",
"0":")","-":"_","=":"+",";":":","'":"\"",",":"<",".":">","/":"?","\\":"|" }
if ( k.length > 1 && special_keys[k] == code ) num_pressed++;
else if( opt['keycode'] && opt['keycode'] == code ) num_pressed++;
else if( character == k ) num_pressed++; //The special keys did not match
else if( shift_nums[character] && e.shiftKey ) { character = shift_nums[character]; if(character == k) num_pressed++; }
}
if( num_pressed == keycombo.length && modifiers.ctrl .pressed == modifiers.ctrl .wanted
&& modifiers.shift.pressed == modifiers.shift.wanted
&& modifiers.alt .pressed == modifiers.alt .wanted
&& modifiers.meta .pressed == modifiers.meta .wanted )
{ callback( e ); // *** Fire off the function that matched the pressed keys ***********************************
if(!opt['propagate']) { e.cancelBubble = true; e.returnValue = false; if (e.stopPropagation) { e.stopPropagation(); e.preventDefault(); } return; }
}
} ).bind( this );
this.all_shortcuts[ shortcut_combination ] = { 'callback':onkeypress, 'target':ele, 'event': opt['type'] };
if ( ele.addEventListener ) ele.addEventListener(opt['type'], onkeypress, false);
else if( ele.attachEvent ) ele.attachEvent('on'+opt['type'], onkeypress);
else ele[ 'on'+opt['type']] = onkeypress;
}
remove(shortcut_combination) // Just specify the shortcut and this will remove the binding
{ shortcut_combination = shortcut_combination.toLowerCase();
var binding = this.all_shortcuts[shortcut_combination];
delete( this.all_shortcuts[shortcut_combination] )
if( !binding ) return;
var type = binding[ 'event' ], ele = binding[ 'target' ], callback = binding[ 'callback' ];
if(ele.detachEvent) ele.detachEvent('on'+type, callback);
else if(ele.removeEventListener) ele.removeEventListener(type, callback, false);
else ele['on'+type] = false;
}
}
class Graphics_State // Stores things that affect multiple shapes, such as lights and the camera.
{ constructor( camera_transform = Mat4.identity(), projection_transform = Mat4.identity() )
{ Object.assign( this, { camera_transform, projection_transform, animation_time: 0, animation_delta_time: 0, lights: [] } ); }
}
class Light // The properties of one light in the scene (Two 4x1 Vecs and a scalar)
{ constructor( position, color, size ) { Object.assign( this, { position, color, attenuation: 1/size } ); } };
class Color extends Vec // Just an alias. Colors are just special 4x1 vectors expressed as: ( red, green, blue, opacity ) each from 0 to 1.
{ }
class Graphics_Addresses // For organizing communication with the GPU for Shaders
{ constructor( program, gl )
{ var num_uniforms = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
for (var i = 0; i < num_uniforms; ++i)
{ var u = gl.getActiveUniform(program, i).name.split('[')[0]; // Retrieve the GPU addresses of each uniform variable in the shader,
this[ u + "_loc" ] = gl.getUniformLocation( program, u ); // based on their names, and store these pointers for later.
}
class Shader_Attribute { constructor( name, size, type, enabled, normalized, stride, pointer )
{ Object.assign( this, { index: gl.getAttribLocation( program, name ), size, type, enabled, normalized, stride, pointer } ); } }
this.shader_attributes = [ new Shader_Attribute( "object_space_pos", 3, gl.FLOAT, true, false, 0, 0 ), // Pointers to all shader
new Shader_Attribute( "normal" , 3, gl.FLOAT, true, false, 0, 0 ), // attribute variables
new Shader_Attribute( "tex_coord" , 2, gl.FLOAT, false, false, 0, 0 ),
new Shader_Attribute( "color" , 4, gl.FLOAT, false, false, 0, 0 ) ];
}
}
class Shader // Manages strings of GLSL code that will be sent to the GPU and will run to draw every shape.
{ constructor( gl ) // Extend the class and fill in the abstract functions to make the constructor work.
{ Object.assign( this, { gl, program: gl.createProgram() } );
var shared = this.shared_glsl_code() || "";
var vertShdr = gl.createShader( gl.VERTEX_SHADER );
gl.shaderSource( vertShdr, shared + this.vertex_glsl_code() );
gl.compileShader( vertShdr );
if ( !gl.getShaderParameter(vertShdr, gl.COMPILE_STATUS) ) throw "Vertex shader compile error: " + gl.getShaderInfoLog( vertShdr );
var fragShdr = gl.createShader( gl.FRAGMENT_SHADER );
gl.shaderSource( fragShdr, shared + this.fragment_glsl_code() );
gl.compileShader( fragShdr );
if ( !gl.getShaderParameter(fragShdr, gl.COMPILE_STATUS) ) throw "Fragment shader compile error: " + gl.getShaderInfoLog( fragShdr );
gl.attachShader( this.program, vertShdr );
gl.attachShader( this.program, fragShdr );
gl.linkProgram( this.program );
if ( !gl.getProgramParameter( this.program, gl.LINK_STATUS) ) throw "Shader linker error: " + gl.getProgramInfoLog( this.program );
this.g_addrs = new Graphics_Addresses( this.program, this.gl );
}
activate() { this.gl.useProgram( this.program ); }
material(){} update_GPU(){} shared_glsl_code(){} vertex_glsl_code(){} fragment_glsl_code(){} // You have to override these functions
}
class Texture // Wrap a pointer to a new texture buffer along with a new HTML image object.
{ constructor( gl, filename, bool_mipMap, bool_will_copy_to_GPU = true )
{ Object.assign( this, { filename, bool_mipMap, bool_will_copy_to_GPU, id: gl.createTexture() } );
gl.bindTexture(gl.TEXTURE_2D, this.id );
gl.texImage2D (gl.TEXTURE_2D, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE,
new Uint8Array([255, 0, 0, 255])); // A single red pixel, as a placeholder image to prevent a console warning.
this.image = new Image();
this.image.onload = ( function (texture, bool_mipMap) // This self-executing anonymous function makes the real onload() function:
{ return function( ) // Instrctions for whenever the real image file is ready
{ gl.pixelStorei ( gl.UNPACK_FLIP_Y_WEBGL, bool_will_copy_to_GPU );
gl.bindTexture ( gl.TEXTURE_2D, texture.id );
gl.texImage2D ( gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, texture.image );
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR ); // Always use bi-linear sampling when the image will appear magnified.
if( bool_mipMap ) // When it will appear shrunk, then either use tri-linear sampling of its mip maps:
{ gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_LINEAR); gl.generateMipmap(gl.TEXTURE_2D); }
else
gl.texParameteri( gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); // Or use the worst sampling method, to illustrate the difference.
texture.loaded = true;
}
} ) ( this, bool_mipMap, bool_will_copy_to_GPU );
if( bool_will_copy_to_GPU ) { this.image.crossOrigin = "Anonymous"; this.image.src = this.filename; } // Avoid a browser warning, and load the image file.
} }
class Canvas_Manager // This class manages a whole graphics program for one on-page canvas, including its textures, shapes, shaders, and scenes.
{ constructor( canvas_id, background_color, scenes ) // In addition to requesting a WebGL context, it stores Shaders and Textures, and informs the canvas
{ var gl, demos = [], canvas = document.getElementById( canvas_id ); // of which functions to call during events - such as a key getting pressed or it being time to redraw.
Object.assign( this, { instances: new Map(), shapes_in_use: {}, scene_components: [], prev_time: 0,
canvas, width: canvas.clientWidth, height: canvas.clientHeight,
globals: { animate: true, string_map: {}, graphics_state: new Graphics_State() } } );
for ( let name of [ "webgl", "experimental-webgl", "webkit-3d", "moz-webgl" ] )
if ( gl = this.gl = this.canvas.getContext( name ) ) break; // Get the GPU ready, creating a new WebGL context for this canvas
if ( !gl ) throw "Canvas failed to make a WebGL context.";
for( let s of scenes ) this.register_scene_component( new ( eval(s) )( this ) ); // Register the initially requested scenes to the render loop.
gl.clearColor.apply( gl, background_color ); // Tell the GPU which color to clear the canvas with each frame
gl.viewport( 0, 0, this.width, this.height ); // Build the canvas's matrix for converting -1 to 1 ranged coords to its own pixel coords.
gl.enable( gl.DEPTH_TEST ); gl.enable( gl.BLEND ); // Enable Z-Buffering test with blending
gl.blendFunc( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA ); // Specify an interpolation method for blending "transparent" triangles over the existing pixels
gl.bindTexture(gl.TEXTURE_2D, gl.createTexture() ); // A single red pixel, as a placeholder image to prevent a console warning:
gl.texImage2D (gl.TEXTURE_2D, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, new Uint8Array([255, 0, 0, 255]));
window.requestAnimFrame = ( w => // Find the correct browser's version of requestAnimationFrame() needed for queue-ing up re-display events:
w.requestAnimationFrame || w.webkitRequestAnimationFrame || w.mozRequestAnimationFrame || w.oRequestAnimationFrame || w.msRequestAnimationFrame ||
function( callback, element ) { w.setTimeout(callback, 1000/60); } )( window );
}
get_instance( shader_or_texture ) // If a scene requests that the Canvas keeps a certain Shader or Texture loaded, check if we already have one first.
{ if( this.instances[ shader_or_texture ] ) return this.instances[ shader_or_texture ]; // Return the one that already is loaded if it exists. Otherwise,
if( typeof shader_or_texture == "string" ) return this.instances[ shader_or_texture ] = new Texture( this.gl, shader_or_texture, true ); // Load requested texture onto GPU buffer, or:
return this.instances[ shader_or_texture ] = new ( shader_or_texture )( this.gl ); // Compile and put the requested shader onto the GPU.
}
register_scene_component( component ) // The first Scene_Component to be added gets to show its text. Every Scene_Component gets to show their control panel and enter the event loop.
{ if( !this.scene_components.length && document.querySelector("#explanation_section") ) component.show_explanation( document.querySelector("#explanation_section") );
this.scene_components.unshift( component ); component.make_control_panel( this.controls );
}
render( time = 0 ) // Animate shapes based upon how much measured real time has transpired.
{ this.globals.graphics_state.animation_delta_time = time - this.prev_time;
if( this.globals.animate ) this.globals.graphics_state.animation_time += this.globals.graphics_state.animation_delta_time;
this.prev_time = time;
for ( let s in this.shapes_in_use ) if( !this.shapes_in_use[s].gl ) this.shapes_in_use[s].copy_onto_graphics_card( this.gl );
this.gl.clear( this.gl.COLOR_BUFFER_BIT | this.gl.DEPTH_BUFFER_BIT); // Clear the canvas's pixels and z-buffer.
for( let live_string of document.querySelectorAll(".live_string") ) live_string.textContent = live_string.onload();
for ( let s of this.scene_components ) s.display( this.globals.graphics_state ); // Draw each registered animation.
window.requestAnimFrame( this.render.bind( this ) ); // Now that this frame is drawn, request that render() happen again
} // as soon as all other web page events are processed.
}
class Scene_Component // Scene_Component Superclass -- The base class for any scene part or code snippet that we can add to a canvas.
{ constructor( context ) // Register it with your Canvas_Manager, and override its display() and make_control_panel() functions to make it do something.
{ Object.assign( this, { controls: new Keyboard_Manager(), control_panel: document.createElement( "td" ), globals: context.globals } );
this.control_panel.textContent = this.constructor.name; this.new_line();
document.getElementById( "control_buttons" ).rows[0].appendChild( this.control_panel );
}
new_line() { this.control_panel.appendChild( document.createElement( "br" ) ) }
live_string( callback ) { this.control_panel.appendChild( Object.assign( document.createElement( "span" ), { className:"live_string", onload: callback } ) ) }
key_triggered_button( description, shortcut_combination, callback, color = '#'+Math.random().toString(9).slice(-6), release_event, recipient = this )
{ let button = this.control_panel.appendChild( Object.assign( document.createElement( "button" ), { default_color: color, textContent: "("+shortcut_combination+") "+description, style: "background-color:" + color } ) ),
press = function() { button.style['background-color'] = "red"; button.style['z-index'] = "1"; button.style['transform'] = "scale(2)"; callback.call( recipient ); },
release = function() { button.style['background-color'] = button.default_color; button.style['z-index'] = "0"; button.style['transform'] = "scale(1)"; if( release_event ) release_event.call( recipient ); };
button.addEventListener( "mousedown", press ); button.addEventListener( "mouseup", release );
if( !shortcut_combination ) return;
this.controls.add( shortcut_combination, press, );
this.controls.add( shortcut_combination, release, {'type':'keyup'} );
}
submit_shapes( context, shapes ) // Store pointers to the shapes locally. Also submit them to the outer context held by the Canvas_Manager.
{ if( !this.shapes ) this.shapes = {};
// this.shapes = [];
for( let s in shapes )
{ if( context.shapes_in_use[s] ) this.shapes[s] = context.shapes_in_use[s]; // If two scenes give any shape the same name as an existing one, the
else this.shapes[s] = context.shapes_in_use[s] = shapes[s]; // existing one is used instead and the new shape is thrown out.
}
}
make_control_panel(){} display( graphics_state ){} show_explanation( document_section ){} // You have to override these functions.
}
class Object_From_File
{ constructor( url, text_parsing_function, request = new XMLHttpRequest() ) // Read an external file using an AJAX request, then build an
{ request.onreadystatechange = function() // object out of that data using your own supplied parsing function.
{ if( request.readyState === 4)
if( request.status === 200 ) text_parsing_function( request.responseText );
else console.error( 'File retrieval from ' + url + ' failed with status ' + request.status );
};
request.overrideMimeType( "application/json" );
request.open('GET', url, true);
request.send();
} }
class Code_Manager // Break up a string containing code (any es6 JavaScript). The parser expression is from https://github.com/lydell/js-tokens
{ constructor( code ) // Their limitation: "If the end of a statement looks like a regex literal (even if it isn’t), it will be treated as one."
{ let es6_tokens_parser = RegExp( [
/((['"])(?:(?!\2|\\).|\\(?:\r\n|[\s\S]))*(\2)?|`(?:[^`\\$]|\\[\s\S]|\$(?!\{)|\$\{(?:[^{}]|\{[^}]*\}?)*\}?)*(`)?)/, // Any string.
/(\/\/.*)|(\/\*(?:[^*]|\*(?!\/))*(\*\/)?)/, // Any comment (2 forms). And next, any regex:
/(\/(?!\*)(?:\[(?:(?![\]\\]).|\\.)*\]|(?![\/\]\\]).|\\.)+\/(?:(?!\s*(?:\b|[\u0080-\uFFFF$\\'"~({]|[+\-!](?!=)|\.?\d))|[gmiyu]{1,5}\b(?![\u0080-\uFFFF$\\]|\s*(?:[+\-*%&|^<>!=?({]|\/(?![\/*])))))/,
/(0[xX][\da-fA-F]+|0[oO][0-7]+|0[bB][01]+|(?:\d*\.\d+|\d+\.?)(?:[eE][+-]?\d+)?)/, // Any number.
/((?!\d)(?:(?!\s)[$\w\u0080-\uFFFF]|\\u[\da-fA-F]{4}|\\u\{[\da-fA-F]+\})+)/, // Any name.
/(--|\+\+|&&|\|\||=>|\.{3}|(?:[+\-\/%&|^]|\*{1,2}|<{1,2}|>{1,3}|!=?|={1,2})=?|[?~.,:;[\](){}])/, // Any punctuator.
/(\s+)|(^$|[\s\S])/ // Any whitespace. Lastly, blank/invalid.
].map( r => r.source ).join('|'), 'g' );
this.tokens = []; this.no_comments = []; let single_token = null;
while( ( single_token = es6_tokens_parser.exec( code ) ) !== null )
{ let token = { type: "invalid", value: single_token[0] }
if ( single_token[ 1 ] ) token.type = "string" , token.closed = !!( single_token[3] || single_token[4] )
else if ( single_token[ 5 ] ) token.type = "comment"
else if ( single_token[ 6 ] ) token.type = "comment", token.closed = !!single_token[7]
else if ( single_token[ 8 ] ) token.type = "regex"
else if ( single_token[ 9 ] ) token.type = "number"
else if ( single_token[ 10 ] ) token.type = "name"
else if ( single_token[ 11 ] ) token.type = "punctuator"
else if ( single_token[ 12 ] ) token.type = "whitespace"
this.tokens.push( token )
if( token.type != "whitespace" && token.type != "comment" ) this.no_comments.push( token.value );
}
}
static highlight_tokens( tokens, result = "" ) // Format the code with colors and links where appropriate:
{ const color_map = { string: "chocolate", comment: "green", regex: "blue", number: "magenta", name: "black", punctuator: "red", whitespace: "black" };
for( let t of tokens )
if( t.type == "name" && ( core_dependencies.includes( t.value ) || all_dependencies.includes( t.value ) ) )
result += "<a href='javascript:void(0);' onclick='Code_Manager.display_code(" + t.value + ")'>" + t.value + "</a>" ;
else result += "<font color='" + color_map[t.type] + "'>" + t.value + "</font>";
return result;
}
static display_code( class_to_display, element_name = "code_display" )
{ document.querySelector( "#"+element_name ).dataset.displayed = class_to_display;
document.querySelector( "#"+element_name ).innerHTML = Code_Manager.highlight_tokens( new Code_Manager( class_to_display.toString() ).tokens ); }
}