-
Notifications
You must be signed in to change notification settings - Fork 6
/
bootstrap_group_analysis_1x1.py
executable file
·213 lines (163 loc) · 8.77 KB
/
bootstrap_group_analysis_1x1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python3
"""Script to perform the group analysis.
Creates the figures 3 and 4 from the paper
References:
https://towardsdatascience.com/an-introduction-to-the-bootstrap-method-58bcb51b4d60
https://machinelearningmastery.com/calculate-bootstrap-confidence-intervals-machine-learning-results-python/
https://stats.stackexchange.com/questions/186337/average-roc-for-repeated-10-fold-cross-validation-with-probability-estimates
"""
import argparse
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from sklearn.metrics import roc_curve, auc
from tqdm import tqdm
from utils import COLUMNS_NAME, load_dataset, cliff_delta
PROJECT_ROOT = Path.cwd()
def compute_brain_regions_deviations(diff_df, clinical_df, disease_label, hc_label=1):
""" Calculate the Cliff's delta effect size between groups."""
region_df = pd.DataFrame(columns=['regions', 'pvalue', 'effect_size'])
diff_hc = diff_df.loc[clinical_df['Diagn'] == disease_label]
diff_patient = diff_df.loc[clinical_df['Diagn'] == hc_label]
for region in COLUMNS_NAME:
_, pvalue = stats.mannwhitneyu(diff_hc[region], diff_patient[region])
effect_size = cliff_delta(diff_hc[region].values, diff_patient[region].values)
region_df = region_df.append({'regions': region, 'pvalue': pvalue, 'effect_size': effect_size},
ignore_index=True)
return region_df
def compute_classification_performance(reconstruction_error_df, clinical_df, disease_label, hc_label=1):
""" Calculate the AUCs of the normative model."""
error_hc = reconstruction_error_df.loc[clinical_df['Diagn'] == hc_label]['Reconstruction error']
error_patient = reconstruction_error_df.loc[clinical_df['Diagn'] == disease_label]['Reconstruction error']
fpr, tpr, _ = roc_curve(list(np.zeros_like(error_hc)) + list(np.ones_like(error_patient)),
list(error_hc) + list(error_patient))
roc_auc = auc(fpr, tpr)
tpr = np.interp(np.linspace(0, 1, 101), fpr, tpr)
tpr[0] = 0.0
return roc_auc, tpr
def main(dataset_name, disease_label):
"""Perform the group analysis."""
# ----------------------------------------------------------------------------
n_bootstrap = 1000
model_name = 'supervised_aae'
participants_path = PROJECT_ROOT / 'data' / dataset_name / 'participants.tsv'
freesurfer_path = PROJECT_ROOT / 'data' / dataset_name / 'freesurferData.csv'
hc_label = 1
# ----------------------------------------------------------------------------
bootstrap_dir = PROJECT_ROOT / 'outputs' / 'bootstrap_analysis'
model_dir = bootstrap_dir / model_name
ids_path = PROJECT_ROOT / 'outputs' / (dataset_name + '_homogeneous_ids.csv')
# ----------------------------------------------------------------------------
clinical_df = load_dataset(participants_path, ids_path, freesurfer_path)
clinical_df = clinical_df.set_index('participant_id')
tpr_list = []
auc_roc_list = []
effect_size_list = []
for i_bootstrap in tqdm(range(n_bootstrap)):
bootstrap_model_dir = model_dir / '{:03d}'.format(i_bootstrap)
output_dataset_dir = bootstrap_model_dir / dataset_name
output_dataset_dir.mkdir(exist_ok=True)
analysis_dir = output_dataset_dir / '{:02d}_vs_{:02d}'.format(hc_label, disease_label)
analysis_dir.mkdir(exist_ok=True)
# ----------------------------------------------------------------------------
normalized_df = pd.read_csv(output_dataset_dir / 'normalized.csv', index_col='participant_id')
reconstruction_df = pd.read_csv(output_dataset_dir / 'reconstruction.csv', index_col='participant_id')
reconstruction_error_df = pd.read_csv(output_dataset_dir / 'reconstruction_error.csv',
index_col='participant_id')
# ----------------------------------------------------------------------------
# Compute effect size of the brain regions for the bootstrap iteration
diff_df = np.abs(normalized_df - reconstruction_df)
region_df = compute_brain_regions_deviations(diff_df, clinical_df, disease_label)
effect_size_list.append(region_df['effect_size'].values)
region_df.to_csv(analysis_dir / 'regions_analysis.csv', index=False)
# ----------------------------------------------------------------------------
# Compute AUC-ROC for the bootstrap iteration
roc_auc, tpr = compute_classification_performance(reconstruction_error_df, clinical_df, disease_label)
auc_roc_list.append(roc_auc)
tpr_list.append(tpr)
(bootstrap_dir / dataset_name).mkdir(exist_ok=True)
comparison_dir = bootstrap_dir / dataset_name / ('{:02d}_vs_{:02d}'.format(hc_label, disease_label))
comparison_dir.mkdir(exist_ok=True)
# ----------------------------------------------------------------------------
# Save regions effect sizes
effect_size_df = pd.DataFrame(columns=COLUMNS_NAME, data=np.array(effect_size_list))
effect_size_df.to_csv(comparison_dir / 'effect_size.csv')
# Save AUC bootstrap values
auc_roc_list = np.array(auc_roc_list)
auc_roc_df = pd.DataFrame(columns=['AUC-ROC'], data=auc_roc_list)
auc_roc_df.to_csv(comparison_dir / 'auc_rocs.csv', index=False)
# ----------------------------------------------------------------------------
# Create Figure 3 of the paper
tpr_list = np.array(tpr_list)
mean_tprs = tpr_list.mean(axis=0)
tprs_upper = np.percentile(tpr_list, 97.5, axis=0)
tprs_lower = np.percentile(tpr_list, 2.5, axis=0)
plt.plot(np.linspace(0, 1, 101),
mean_tprs,
'b', lw=2,
label='ROC curve (AUC = {:0.3f} ; 95% CI [{:0.3f}, {:0.3f}])'.format(np.mean(auc_roc_list),
np.percentile(auc_roc_list, 2.5),
np.percentile(auc_roc_list, 97.5)))
plt.fill_between(np.linspace(0, 1, 101),
tprs_lower, tprs_upper,
color='grey', alpha=0.2)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1.05])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.legend(loc='lower right')
plt.savefig(comparison_dir / 'AUC-ROC.eps', format='eps')
plt.close()
plt.clf()
# --------------------------------------------------------------------------------------------
# Create figure for supplementary materials
effect_size_df = effect_size_df.reindex(effect_size_df.mean().sort_values().index, axis=1)
plt.figure(figsize=(16, 20))
plt.hlines(range(101),
np.percentile(effect_size_df, 2.5, axis=0),
np.percentile(effect_size_df, 97.5, axis=0))
plt.plot(effect_size_df.mean().values, range(101), 's', color='k')
plt.axvline(0, ls='--')
plt.yticks(np.arange(101), effect_size_df.columns)
plt.xlabel('Effect size')
plt.ylabel('Brain regions')
plt.tight_layout()
plt.savefig(comparison_dir / 'Regions.eps', format='eps')
plt.close()
plt.clf()
# --------------------------------------------------------------------------------------------
# Create Figure 4 of the paper
effect_size_sig_df = effect_size_df.reindex(effect_size_df.mean().sort_values().index, axis=1)
lower_bound = np.percentile(effect_size_sig_df, 2.5, axis=0)
higher_bound = np.percentile(effect_size_sig_df, 97.5, axis=0)
for i, column in enumerate(effect_size_sig_df.columns):
if (lower_bound[i] < 0) & (higher_bound[i] > 0):
effect_size_sig_df = effect_size_sig_df.drop(columns=column)
n_regions = len(effect_size_sig_df.columns)
plt.figure()
plt.hlines(range(n_regions),
np.percentile(effect_size_sig_df, 2.5, axis=0),
np.percentile(effect_size_sig_df, 97.5, axis=0))
plt.plot(effect_size_sig_df.mean().values, range(n_regions), 's', color='k')
plt.axvline(0, ls='--')
plt.yticks(np.arange(n_regions), effect_size_sig_df.columns)
plt.xlabel('Effect size')
plt.ylabel('Brain regions')
plt.tight_layout()
plt.savefig(comparison_dir / 'Significant_regions.eps', format='eps')
plt.close()
plt.clf()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-D', '--dataset_name',
dest='dataset_name',
help='Dataset name to perform group analysis.')
parser.add_argument('-L', '--disease_label',
dest='disease_label',
help='Disease label to perform group analysis.',
type=int)
args = parser.parse_args()
main(args.dataset_name, args.disease_label)