-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain_multi_mnist.py
97 lines (87 loc) · 3.26 KB
/
main_multi_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import pdb
import numpy as np
from torchvision import transforms
from data.multi_mnist import MultiMNIST
from net.lenet import MultiLeNetR, MultiLeNetO
from pcgrad import PCGrad
from utils import create_logger
# ------------------ CHANGE THE CONFIGURATION -------------
PATH = './dataset'
LR = 0.0005
BATCH_SIZE = 256
NUM_EPOCHS = 100
TASKS = ['R', 'L']
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# ---------------------------------------------------------
accuracy = lambda logits, gt: ((logits.argmax(dim=-1) == gt).float()).mean()
to_dev = lambda inp, dev: [x.to(dev) for x in inp]
logger = create_logger('Main')
global_transformer = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))])
train_dst = MultiMNIST(PATH,
train=True,
download=True,
transform=global_transformer,
multi=True)
train_loader = torch.utils.data.DataLoader(train_dst,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=4)
val_dst = MultiMNIST(PATH,
train=False,
download=True,
transform=global_transformer,
multi=True)
val_loader = torch.utils.data.DataLoader(val_dst,
batch_size=100,
shuffle=True,
num_workers=1)
nets = {
'rep': MultiLeNetR().to(DEVICE),
'L': MultiLeNetO().to(DEVICE),
'R': MultiLeNetO().to(DEVICE)
}
param = [p for v in nets.values() for p in list(v.parameters())]
optimizer = torch.optim.Adam(param, lr=LR)
optimizer = PCGrad(optimizer)
for ep in range(NUM_EPOCHS):
for net in nets.values():
net.train()
for batch in train_loader:
mask = None
optimizer.zero_grad()
img, label_l, label_r = to_dev(batch, DEVICE)
rep, mask = nets['rep'](img, mask)
out_l, mask_l = nets['L'](rep, None)
out_r, mask_r = nets['R'](rep, None)
losses = [F.nll_loss(out_l, label_l), F.nll_loss(out_r, label_r)]
optimizer.pc_backward(losses)
# sum(losses).backward()
optimizer.step()
losses, acc = [], []
for net in nets.values():
net.eval()
for batch in val_loader:
img, label_l, label_r = to_dev(batch, DEVICE)
mask = None
rep, mask = nets['rep'](img, mask)
out_l, mask_l = nets['L'](rep, None)
out_r, mask_r = nets['R'](rep, None)
losses.append([
F.nll_loss(out_l, label_l).item(),
F.nll_loss(out_r, label_r).item()
])
acc.append(
[accuracy(out_l, label_l).item(),
accuracy(out_r, label_r).item()])
losses, acc = np.array(losses), np.array(acc)
logger.info('epoches {}/{}: loss (left, right) = {:5.4f}, {:5.4f}'.format(
ep, NUM_EPOCHS, losses[:,0].mean(), losses[:,1].mean()))
logger.info(
'epoches {}/{}: accuracy (left, right) = {:5.3f}, {:5.3f}'.format(
ep, NUM_EPOCHS, acc[:,0].mean(), acc[:,1].mean()))