-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_histories.py
54 lines (43 loc) · 2.51 KB
/
experiment_histories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from copy import deepcopy
from dataclasses import astuple, dataclass
import math
import numpy as np
@dataclass
class ExperimentHistories:
""" Stores np.arrays with histories from one experiment. """
train_loss: np.array = None
val_loss: np.array = None
val_acc: np.array = None
test_acc: np.array = None
sparsity: np.array = None
def setup(self, net_count, prune_count, epoch_length, epoch_count, plot_step):
""" Setup histories with correct shapes.
Loss and accuracies are saved at each plot_step iteration.
Sparsity is saved once for all models. """
history_length = calc_hist_length_per_net(epoch_length, epoch_count, plot_step)
self.train_loss = np.zeros((net_count, prune_count + 1, history_length), dtype=float)
self.val_loss = np.zeros_like(self.train_loss, dtype=float)
self.val_acc = np.zeros_like(self.train_loss, dtype=float)
self.test_acc = np.zeros_like(self.train_loss, dtype=float)
self.sparsity = np.ones((prune_count + 1), dtype=float)
def __eq__(self, other):
""" Check if all fields (each is np.array) are equal. """
assert isinstance(other, ExperimentHistories), f"'other' has invalid type {type(other)}."
self_tuple, other_tuple = astuple(self), astuple(other)
return all(np.array_equal(self_arr, other_arr) for self_arr, other_arr in zip(self_tuple, other_tuple))
def stack_histories(self, other):
""" Generate a new ExperimentHistories object, which contains joined arrays for losses and accuracies.
Add arrays from 'other' to corresponding arrays from 'self' (basically on nets-dimension).
Levels of sparsity and all dimensions need to match. """
assert isinstance(other, ExperimentHistories), f"'other' has invalid type {type(other)}."
np.testing.assert_array_almost_equal(self.sparsity, other.sparsity)
new_history = ExperimentHistories()
new_history.sparsity = deepcopy(self.sparsity)
new_history.train_loss = np.vstack([self.train_loss, other.train_loss])
new_history.val_loss = np.vstack([self.val_loss, other.val_loss])
new_history.val_acc = np.vstack([self.val_acc, other.val_acc])
new_history.test_acc = np.vstack([self.test_acc, other.test_acc])
return new_history
def calc_hist_length_per_net(batch_count, epoch_count, plot_step):
""" Calculate length of history arrays based on batch_count, epoch_count and plot_step. """
return math.floor((batch_count * epoch_count) / plot_step)