forked from Syencil/tensorRT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
retinanet_main.cpp
97 lines (87 loc) · 3.58 KB
/
retinanet_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Created by luozhiwang (luozw1994@outlook.com)
// Date: 2020/5/15
#include "retinanet.h"
void initInputParams(common::InputParams &inputParams){
inputParams.ImgH = 640;
inputParams.ImgW = 640;
inputParams.ImgC = 3;
inputParams.BatchSize = 1;
inputParams.IsPadding = true;
inputParams.HWC = false;
inputParams.InputTensorNames = std::vector<std::string>{"input.1"};
inputParams.OutputTensorNames = std::vector<std::string>{"815", "816", "841", "842", "867", "868", "893", "894", "919", "920"};
inputParams.pFunction = [](const unsigned char &x){return (static_cast<float>(x) -118) / 58;};
}
void initTrtParams(common::TrtParams &trtParams){
trtParams.ExtraWorkSpace = 0;
trtParams.FP32 = true;
trtParams.FP16 = false;
trtParams.Int32 = false;
trtParams.Int8 = false;
trtParams.MaxBatch = 100;
trtParams.MinTimingIteration = 1;
trtParams.AvgTimingIteration = 2;
trtParams.CalibrationTablePath = "/work/tensorRT-7/data/retinanetInt8.calibration";
trtParams.CalibrationImageDir = "/data/dataset/coco/images/train2017";
trtParams.OnnxPath = "/work/tensorRT-7/data/onnx/retinanet.onnx";
trtParams.SerializedPath = "/work/tensorRT-7/data/onnx/retinanet.serialized";
}
std::vector<common::Anchor> initAnchors(float *ratios, int ratio_num, float *scales, int scales_num, float base_size, bool scale_first=true){
std::vector<common::Anchor> anchors;
common::Anchor anchor;
if(scale_first){
for(int i=0; i<ratio_num; ++i){
float h_ratio = sqrtf(ratios[i]);
float w_ratio = 1 / h_ratio;
for(int j=0; j<scales_num; ++j){
anchor.width = base_size * w_ratio * scales[j];
anchor.height = base_size * h_ratio * scales[j];
anchors.emplace_back(anchor);
}
}
}else{
for(int i=0; i<scales_num; ++i){
for(int j=0; j<ratio_num; ++j){
float h_ratio = sqrtf(ratios[j]);
float w_ratio = 1 / h_ratio;
anchor.width = base_size * w_ratio * scales[i];
anchor.height = base_size * h_ratio * scales[i];
anchors.emplace_back(anchor);
}
}
}
return anchors;
}
void initDetectParams(common::DetectParams &detectParams){
detectParams.Strides = std::vector<int> {8, 16, 32, 64, 128};
float ratios[3] = {0.5, 1, 2};
float scales[3] = {4, 5.0397, 6.3496};
detectParams.Anchors = initAnchors(ratios, 3, scales, 3, 1);
detectParams.AnchorPerScale = 9;
detectParams.NumClass = 80;
detectParams.NMSThreshold = 0.5;
detectParams.PostThreshold = 0.6;
}
int main(int args, char **argv){
common::InputParams inputParams;
common::TrtParams trtParams;
common::DetectParams detectParams;
initInputParams(inputParams);
initTrtParams(trtParams);
initDetectParams(detectParams);
RetinaNet retinaNet(inputParams, trtParams, detectParams);
retinaNet.initSession(0);
cv::Mat image = cv::imread("/work/tensorRT-7/data/image/coco_1.jpg");
for(int i=0; i<10; ++i){
const auto start_t = std::chrono::high_resolution_clock::now();
std::vector<common::Bbox> bboxes = retinaNet.predOneImage(image);
const auto end_t = std::chrono::high_resolution_clock::now();
std::cout
<< "Wall clock time passed: "
<< std::chrono::duration<double, std::milli>(end_t-start_t).count()<<"ms"
<<std::endl;
image = renderBoundingBox(image, bboxes);
cv::imwrite("/work/tensorRT-7/data/image/render.jpg", image);
}
return 0;
}