-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest-sks.py
107 lines (94 loc) · 5.05 KB
/
test-sks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# orig_embeds_params = model.get_input_embeddings().weight.data.clone()
import argparse
import glob
import os
import torch
from llava.eval.my_llava import *
from llava.mm_utils import get_model_name_from_path
from llava.model.builder import load_pretrained_model
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser()
#--- Model related
parser.add_argument("--model_path", type=str, default="./llava_ckpts/llava-v1.6-internal-vicuna-13b-336px")
parser.add_argument("--model_base", type=str, default=None)
parser.add_argument("--model_name", type=str, default=None)
parser.add_argument("--conv_mode", type=str, default=None)
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints')
parser.add_argument("--epoch", type=str, default='2')
parser.add_argument("--data_root", type=str, default='./yollava-data')
parser.add_argument("--sks_name", type=str, default='shiba-yellow')
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--prefix_token", type=int, default=3)
#--- Log related
parser.add_argument("--exp_name", type=str, default='multi-token')
parser.add_argument("--save_json", action='store_true', default=False)
parser.add_argument("--suffix_prompt", type=str, default=None)
return parser.parse_args()
if __name__ == "__main__":
# model_path = 'liuhaotian/llava-v1.5-13b'
args = get_args()
prompt = f"Write a caption for this photo of <{args.sks_name}>."
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=args.model_path,
model_base=None,
model_name=get_model_name_from_path(args.model_path)
)
model.get_input_embeddings().weight.requires_grad = False
model.lm_head.weight.requires_grad = False
# --- Create sks token
prefix_tokens = [f'<token{i}>' for i in range(args.prefix_token)]
placeholder_tokens = [f'<{args.sks_name}>']
placeholder_tokens.extend(prefix_tokens)
num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
model.resize_token_embeddings(len(tokenizer))
sks_token = torch.load(f'{args.checkpoint_path}/{args.sks_name}/{args.exp_name}/{args.epoch}-token.pt').detach()
lm_head = torch.load(f'{args.checkpoint_path}/{args.sks_name}/{args.exp_name}/{args.epoch}-lmhead.pt', map_location=model.lm_head.weight.device).detach()
model.resize_token_embeddings(len(tokenizer))
model.get_input_embeddings().weight[placeholder_token_ids] = sks_token.to(dtype=model.get_input_embeddings().weight.dtype)
model.lm_head.weight[placeholder_token_ids] = lm_head.detach().to(dtype=model.lm_head.weight.dtype, device=model.lm_head.weight.device)
print('Trained tokens are loaded in: ', placeholder_token_ids)
# args = get_query(args, f"<{args.sks_name}> is <adj1> <adj2> <noun>. " + prompt, model=model)
# sks_prompt = f"{placeholder_tokens[0]} is {' '.join(placeholder_tokens[1:])}."
if args.prefix_token > 0:
prefix_tokens = [f'<token{i}>' for i in range(args.prefix_token)]
placeholder_tokens = [f'<{args.sks_name}>']
placeholder_tokens.extend(prefix_tokens)
if args.suffix_prompt is not None:
# breakpoint()
sks_prompt = f"{placeholder_tokens[0]} {args.suffix_prompt}."
else:
sks_prompt = f"{placeholder_tokens[0]} is {''.join(placeholder_tokens[1:])}"
print('system prompt will add:', sks_prompt)
else:
placeholder_tokens = [f'sks']
sks_prompt = None
print('system prompt will add:', sks_prompt)
args = get_query(args, sks_prompt + ' '+ prompt, model=model, sks_system_prompt=None)
image_files = []
for ext in ['*.png', '*.jpg', '*.jpeg', '*.PNG', '*.JPG', '*.JPEG']:
image_files.extend(glob.glob(os.path.join(args.data_root, ext)))
# image_files = [x for x in image_files if 'henry' in x]
print(image_files)
save_dict = {}
for image_file in image_files:
print(image_file)
images_tensor, image_sizes = get_image_tensor(args, [image_file], model, image_processor)
output, pred_ids = eval_model(args,
model=model,
images_tensor=images_tensor,#images_tensor,
image_sizes=image_sizes,
image_processor=image_processor,
tokenizer=tokenizer,
return_ids=True)
print(output)
save_dict[image_file] = output
if args.save_json:
os.makedirs(f'./qualitative/{args.sks_name}/{args.exp_name}', exist_ok=True)
with open(f'./qualitative/{args.sks_name}/{args.exp_name}/{args.epoch}-output.json', 'w') as f:
json.dump(save_dict, f)
print('Saved to: ', f'./qualitative/{args.sks_name}/{args.exp_name}/{args.epoch}-output.json')