-
Notifications
You must be signed in to change notification settings - Fork 5
/
siqa_2_finetune_bert.sh
47 lines (37 loc) · 1.18 KB
/
siqa_2_finetune_bert.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env bash
#Step1:
#run_classifier_adapter_tune_all.py ->
#
#<!-- Comment -->
#Need to load the Adapter Model
#Here it is probably recommended to use the orginal optimiser as it optimises BERT
TRAINING_UTILITY=training_utility
export CUDA_VISIBLE_DEVICES=7
BERT_DIR="models/BERT_BASE_UNCASED"
BERT_CONFIG=$BERT_DIR/bert_config.json
BERT_VOCAB=$BERT_DIR/vocab.txt
TASKNAME='SIQA'
DATA_DIR=data/$TASKNAME
LEARNING_RATE=1e-5
EPOCHS=2.0
VARIANT=A
EXPERIMENT_NAME=$LEARNING_RATE.$EPOCHS$VARIANT
# BERT_EXTENDED_DIR="models/omcs_pretraining_free_wo_nsp_adapter"
# CHECKPOINT=${BERT_EXTENDED_DIR}/model.ckpt-${STEP}
BERT_EXTENDED_DIR=$BERT_DIR
CHECKPOINT=${BERT_EXTENDED_DIR}/bert_model.ckpt
OUTPUT_DIR="models/output_model_finetunning/${TASKNAME}/BERT_BASE/${EXPERIMENT_NAME}"
python3.6 $TRAINING_UTILITY/run_siqa.py \
--do_train=true \
--do_eval=true \
--do_predict=true \
--data_dir=$DATA_DIR \
--vocab_file=$BERT_VOCAB \
--bert_config_file=$BERT_CONFIG \
--init_checkpoint=$CHECKPOINT \
--max_seq_length=128 \
--train_batch_size=8 \
--learning_rate=$LEARNING_RATE \
--num_train_epochs=$EPOCHS \
--variant=$VARIANT \
--output_dir=$OUTPUT_DIR/ | tee $OUTPUT_DIR.out