-
Notifications
You must be signed in to change notification settings - Fork 0
/
CODIGO2024.ino
319 lines (277 loc) · 8.43 KB
/
CODIGO2024.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
Telemetría para Somoracers [CENTRO FORMACIÓN SOMORROSTRO]
Autor: Luis Moricz Radu / Telemetry Manager
Contacto: luis.moricz.somorrostro@gmail.com
Github: https://github.com/WolfSystems43
Descripción: Este código controla la telemetría de un vehículo para la competición EUSKELEC.
*/
#include <Adafruit_ILI9341.h>
#include <Adafruit_GFX.h>
#include <SPI.h>
#include <DHT.h>
#include <TinyGPS++.h>
#include <SoftwareSerial.h>
#include <Wire.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <MPU6050.h>
#include <vector>
#define TFT_CS D2 // TFT CS
#define TFT_RST D3 // TFT RST
#define TFT_DC D4 // TFT DC
#define DHTPIN 3
#define DHTTYPE DHT22
#define rxPin 0
#define txPin 1
DHT dht(DHTPIN, DHTTYPE);
Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC, TFT_RST);
SoftwareSerial neogps(rxPin, txPin);
TinyGPSPlus gps;
MPU6050 sensor;
WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0;
const char* ssid = "TKNIKA-2G";
const char* password = "mvpemqcv";
const char* mqtt_server = "broker.emqx.io";
const int mqttPort = 1883;
//const char* mqttUser = “mqtt username”;
//const char* mqttPassword = “mqtt password”;
float getTemp() {
return dht.readTemperature();
}
void setup() {
Serial.begin(9600);
neogps.begin(9600);
dht.begin();
Wire.begin();
sensor.initialize();
setup_wifi();
client.setServer(mqtt_server, mqttPort);
client.setCallback(callback);
tft.begin();
tft.fillScreen(ILI9341_BLACK);
tft.setRotation(1);
layout();
}
void layout() {
tft.setCursor(0, 10);
tft.setTextColor(ILI9341_BLUE);
tft.setTextSize(2);
tft.println(" SOMORACERS");
tft.setCursor(50, 30);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(1);
tft.println(" C.F SOMORROSTRO");
tft.setCursor(-100, 180);
tft.setTextColor(ILI9341_ORANGE);
tft.setTextSize(2);
tft.println(" ULT. TIEMPO");
tft.setCursor(5, 130);
tft.setTextColor(ILI9341_RED);
tft.setTextSize(3);
tft.println(" KM/H");
tft.setCursor(100, 180);
tft.setTextColor(ILI9341_CYAN);
tft.setTextSize(2);
tft.println(" BATERIA");
tft.setCursor(180, 10);
tft.setTextColor(ILI9341_DARKCYAN);
tft.setTextSize(2);
tft.println(" PILOT");
tft.setCursor(200, 50);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(2);
tft.println(" LUIS");
tft.setCursor(200, 75);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(2);
tft.println(" MORICZ");
tft.setCursor(200, 100);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(2);
tft.println(" 76");
tft.drawRect(-2, 171, 320, 172, ILI9341_WHITE);
tft.drawRect(-2, 171, 160, 235, ILI9341_WHITE);
tft.drawRect(240, 0, 320, 120, ILI9341_WHITE); // Posicion
tft.drawRect(0, 0, 65, 71, ILI9341_WHITE); // Temperatura Cockpit
}
void loop() {
temperatura();
velocidad();
tiempo();
bateria();
gpsloop();
giroescopio();
}
void setup_wifi() {
delay(10);
Serial.println("Conectandose a: " + String(ssid));
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.println("." + String('\n') + " ");
}
Serial.println("Wifi Conectado" + String('\n') + "IP:" );
Serial.print(WiFi.localIP());
delay(1000);
}
void callback(char* topic, uint8_t* payload, unsigned int length) {
Serial.println("Mensaje recibido [ " + String(topic) + " ]");
for (int i = 0; i < length; i++) {
Serial.println((char)payload[i]);
}
if ((char)payload[0] == '1') {
digitalWrite(BUILTIN_LED, LOW);
} else
digitalWrite(BUILTIN_LED, HIGH);
}
void reconnect() {
Serial.println("Intentado reconectar MQTT...");
if (client.connect("ESP8266Somorrostro")) {
Serial.println("Conectado");
delay (500);
} else {
Serial.print("Conexión fallida / Conexión perdida" + String('\n') + "Reintentando en 5 seg...");
delay(5000);
}
}
static void smartDelay(unsigned long ms) {
unsigned long start = millis();
do
{
while (neogps.available())
gps.encode(neogps.read());
}
while (millis() - start < ms);
}
void temperatura() {
float temp = getTemp();
tft.setCursor(2, 10);
tft.setTextColor(ILI9341_GREEN);
tft.setTextSize(2);
tft.println(" Temp");
#define temperatura_cockpit "telemetria/DHT22/temperatura_cockpit"
client.publish(temperatura_cockpit, String(temp).c_str(), true);
}
bool isNear(double lat1, double lng1, double lat2, double lng2, double radius = 10.0) {
const double R = 6371000;
double dLat = radians(lat2 - lat1);
double dLng = radians(lng2 - lng1);
double a = sin(dLat / 2) * sin(dLat / 2) +
cos(radians(lat1)) * cos(radians(lat2)) *
sin(dLng / 2) * sin(dLng / 2);
double c = 2 * atan2(sqrt(a), sqrt(1 - a));
double distance = R * c;
return distance <= radius;
}
void tiempo() {
tft.setCursor(40, 220);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(2);
unsigned long startTime = 0;
unsigned long lastLapTime = 0;
int lapCount = 0;
std::vector<unsigned long> lapTimes;
double referenceLat = 42.846476; // Latitud del punto de meta VITORIA
double referenceLng = -2.673633; // Longitud del punto de meta VITORIA
while (neogps.available() > 0) {
gps.encode(neogps.read());
if (gps.location.isUpdated()) {
double currentLat = gps.location.lat();
double currentLng = gps.location.lng();
if (isNear(currentLat, currentLng, referenceLat, referenceLng)) {
if (startTime == 0) {
startTime = millis();
Serial.println("Cronómetro iniciado.");
} else {
unsigned long currentTime = millis();
unsigned long lapTime = currentTime - startTime;
startTime = currentTime;
lastLapTime = lapTime;
lapTimes.push_back(lapTime);
lapCount++;
unsigned long minutes = lapTime / 60000;
unsigned long seconds = (lapTime / 1000) % 60;
unsigned long milliseconds = lapTime % 1000;
char lapTimeBuffer[12]; // Buffer para el tiempo de vuelta
snprintf(lapTimeBuffer, sizeof(lapTimeBuffer), "%02d:%02d:%03d", minutes, seconds, milliseconds);
Serial.print("Vuelta ");
Serial.print(lapCount);
Serial.print(", Tiempo: ");
Serial.println(lapTimeBuffer);
tft.println(lapTimeBuffer);
// Publicar el tiempo de vuelta
#define lapTimeTopic "telemetria/tiempo/lapTime"
client.publish(lapTimeTopic, lapTimeBuffer, true);
}
}
}
}
#define lapsTopic "telemetria/tiempo/laps"
client.publish(lapsTopic, String(lapCount).c_str(), true);
}
void velocidad() {
tft.setCursor(10, 125);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(4);
tft.println(gps.speed.kmph());
#define speed_coche "telemetria/GPS/speed_coche"
client.publish(speed_coche, String(gps.speed.kmph()).c_str(), true);
}
void bateria() {
#define SIGNALPIN1 A0
int porcentaje = analogRead(SIGNALPIN1);
tft.setCursor(200, 210);
tft.setTextColor(ILI9341_WHITE);
tft.setTextSize(3);
tft.println("%");
const float V_BAT_MAX = 5.0;
const float V_BAT_MIN = 3.3;
float voltaje = (porcentaje / 1023.0) * V_BAT_MAX;
float mappedporcentaje = ((voltaje - V_BAT_MIN) / (V_BAT_MAX - V_BAT_MIN)) * 100.0;
mappedporcentaje = constrain(porcentaje, 0, 100);
#define porcentaje_bateria "telemetria/bateria/pocentaje_bateria"
client.publish(porcentaje_bateria, String(mappedporcentaje).c_str(), true);
}
void gpsloop() {
boolean newData = false;
for (unsigned long start = millis(); millis() - start < 1000;) {
while (neogps.available()) {
if (gps.encode(neogps.read()))
newData = true;
}
}
if (newData) {
newData = false;
velocidad();
}
}
void reset() {
#define reset 4
while (digitalRead(reset) == HIGH) {
digitalWrite(TFT_RST, HIGH);
delay(10);
digitalWrite(TFT_RST, LOW);
break;
}
}
void giroescopio() {
int16_t gx, gy, gz;
unsigned long tiempo_prev = 0;
float girosc_ang_y;
float girosc_ang_y_prev;
float dt;
sensor.getRotation(&gx, &gy, &gz);
unsigned long current_time = millis();
dt = current_time - tiempo_prev;
tiempo_prev = current_time;
girosc_ang_y = (gy/131.0)*dt/1000.0 + girosc_ang_y_prev;
girosc_ang_y_prev=girosc_ang_y;
Serial.println("\tRotacion Voltante: " + String(girosc_ang_y));
delay(2000);
#define girosc_ang_y "telemetria/volante/girosc_ang_y"
client.publish(girosc_ang_y, String(girosc_ang_y).c_str(), true);
}